HMM(Hidden Markov Model)中的Markov正是随机过程里面的马尔可夫假设的那个Markov。
一、引入
时间序列(数据)Series和集合(数据)Set是不一样的,时间序列数据中的不同两个数据点不能互换,而集合中的任意两个数据点
假设股市中的价格涨跌(观测值)背后有隐状态(牛、熊、平台),那么我们可以用Hidden Markov Model来表示这个过程。
预备知识点:
Markov假设:当前时刻t的状态qt只取决于前一时刻t-1的状态qt-1。这就是一阶马尔可夫假设。
状态转移概率矩阵(Transition Probability Matrix)A,行标是各个隐状态的可能值,列标也是,若有3个隐状态,则A是3x3阶矩阵。
观测概率矩阵(Emission Probability Matrix)B,行标是各个隐状态的可能值,列标是各个可能的观测值。注意:B不一定是矩阵形式,因为观测值不一定是discrete(离散的)。如果观测值是一个连续分布(例如高斯分布),怎么来表示这么一个观测概率矩阵呢?一定是3组(3指的是隐状态数目)高斯分布的参数μ,σ来表示的。
原文:https://www.cnblogs.com/alesvel/p/10147961.html