首页 > 其他 > 详细

HMM笔记

时间:2018-12-20 10:55:10      阅读:160      评论:0      收藏:0      [点我收藏+]

HMM(Hidden Markov Model)中的Markov正是随机过程里面的马尔可夫假设的那个Markov。

一、引入

时间序列(数据)Series和集合(数据)Set是不一样的,时间序列数据中的不同两个数据点不能互换,而集合中的任意两个数据点

假设股市中的价格涨跌(观测值)背后有隐状态(牛、熊、平台),那么我们可以用Hidden Markov Model来表示这个过程。

预备知识点:

Markov假设:当前时刻t的状态qt只取决于前一时刻t-1的状态qt-1。这就是一阶马尔可夫假设。

状态转移概率矩阵(Transition Probability Matrix)A,行标是各个隐状态的可能值,列标也是,若有3个隐状态,则A是3x3阶矩阵。

观测概率矩阵(Emission Probability Matrix)B,行标是各个隐状态的可能值,列标是各个可能的观测值。注意:B不一定是矩阵形式,因为观测值不一定是discrete(离散的)。如果观测值是一个连续分布(例如高斯分布),怎么来表示这么一个观测概率矩阵呢?一定是3组(3指的是隐状态数目)高斯分布的参数μ,σ来表示的。

 

HMM笔记

原文:https://www.cnblogs.com/alesvel/p/10147961.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!