首页 > 其他 > 详细

CF932G Palindrome Partition

时间:2018-12-21 19:22:45      阅读:311      评论:0      收藏:0      [点我收藏+]

传送门

Sol

首先 \(n\) 为奇数肯定无解
\(n\) 为偶数时
老套路,把串 \(S\) 变成 \(S_1S_nS_2S_{n-1}\),设为 \(T\)
那么满足条件的 \(S\) 的划分相当于 \(T\) 中的划分,使得每一段为长度为偶数的回文串
下面就只考虑 \(T\) 的划分
\(f_i\) 表示前 \(i\) 个字符合法划分的方案数,用 \(PAM\) 可以做到 \(\sum\) 树高
这样子远远不够
考虑 \(PAM\) 的一条 \(parent\) 链,分析其性质
\(i\) 为位置 \(p\) 在树上对应的点
\(dif_i\) 表示 \(i\) 与其中父亲的长度之差
由回文串的性质可以发现,向上会有一段的 \(dif\) 相同
\(anc_i\) 表示 \(i\) 上面第一个 \(dif\)\(dif_i\) 不同的祖先
容易得到 \(anc_i\) 的长度至多为 \(i\) 长度的一半
那么每次跳 \(anc_i\) 统计 \(i\)\(anc_i\) 的贡献就可以做到 \(log\)
现在考虑计算 \(i\)\(anc_i\) 的贡献
我们把父亲的串都关于儿子对称,发现恰好是以 \(p-dif_i\) 结尾的
在树上就是 \(i\) 的父亲,当然父亲必须在 \(i\)\(anc_i\) 的链上
那么
\(g_i\) 表示在 \(i\)\(anc_i\) 的贡献和
增量构造 \(PAM\) 的同时计算 \(f\),修改 \(g\)
因为要分偶数,所以奇数的 \(f\) 就直接去掉即可

# include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn(1e6 + 5);
const int mod(1e9 + 7);

inline void Inc(int &x, int y) {
    if ((x += y) >= mod) x -= mod;
}

int n, f[maxn], dif[maxn], anc[maxn], g[maxn];
int fa[maxn], len[maxn], trans[26][maxn], tot, last;
char s[maxn], tmp[maxn];
  
inline void Extend(int c, int pos) {
    register int np, p = last, q, i;
    while (s[pos] != s[pos - len[p] - 1]) p = fa[p];
    if (!trans[c][p]) {
        np = ++tot, len[np] = len[p] + 2, q = fa[p];
        while (s[pos] != s[pos - len[q] - 1]) q = fa[q];
        fa[np] = trans[c][q], trans[c][p] = np;
        dif[np] = len[np] - len[fa[np]];
        anc[np] = dif[np] == dif[fa[np]] ? anc[fa[np]] : fa[np];
    }
    last = trans[c][p];
}

int main() {
    register int i, j, l = 0;
    scanf(" %s", tmp + 1), n = strlen(tmp + 1);
    if (n & 1) return puts("0"), 0;
    for (i = 1, j = n; i <= j; ++i, --j) s[++l] = tmp[i], s[++l] = tmp[j];
    f[0] = 1, len[1] = -1, fa[1] = fa[0] = 1, tot = last = 1;
    for (i = 1; i <= n; ++i) {
        Extend(s[i] - 'a', i);
        for (j = last; j; j = anc[j]) {
            g[j] = f[i - len[anc[j]] - dif[j]];
            if(anc[j] != fa[j]) Inc(g[j], g[fa[j]]);
            if (~i & 1) Inc(f[i], g[j]);
        }
    }
    printf("%d\n", f[n]);
    return 0;
}

CF932G Palindrome Partition

原文:https://www.cnblogs.com/cjoieryl/p/10158439.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!