首页 > 其他 > 详细

Luogu4980 【模板】Polya定理(Polya定理+欧拉函数)

时间:2018-12-23 16:39:36      阅读:170      评论:0      收藏:0      [点我收藏+]

  对于置换0→i,1→i+1……,其中包含0的循环的元素个数显然是n/gcd(i,n),由对称性,循环节个数即为gcd(i,n)。

  那么要求的即为Σngcd(i,n)/n(i=0~n-1,也即1~n)。考虑枚举gcd。显然gcd(i,n)=x在该范围内解的个数是φ(n/x)。分解一下质因数即可。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 1000000007
#define N 100
char getc(){char c=getchar();while ((c<A||c>Z)&&(c<a||c>z)&&(c<0||c>9)) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<0||c>9) {if (c==-) f=-1;c=getchar();}
    while (c>=0&&c<=9) x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
int m,T,prime[N],cnt[N],p[N][N],t,ans;
int ksm(int a,int k)
{
    int s=1;
    for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
    return s;
}
void dfs(int k,int s,int phi)
{
    if (k>t) {ans=(ans+1ll*ksm(m,s-1)*phi)%P;return;}
    for (int i=0;i<cnt[k];i++) dfs(k+1,1ll*s*p[k][i]%P,1ll*phi*(prime[k]-1)%P*p[k][cnt[k]-i-1]%P);
    dfs(k+1,1ll*s*p[k][cnt[k]]%P,phi);
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("a.in","r",stdin);
    freopen("a.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    T=read();
    while (T--)
    {
        int n=read();m=n,t=0;
        for (int i=2;i*i<=n;i++)
        if (n%i==0)
        {
            prime[++t]=i,cnt[t]=1;n/=i;
            while (n%i==0) cnt[t]++,n/=i;
        }
        if (n>1) prime[++t]=n,cnt[t]=1;
        for (int i=1;i<=t;i++)
        {
            p[i][0]=1;
            for (int j=1;j<=cnt[i];j++) p[i][j]=1ll*p[i][j-1]*prime[i]%P;
        }
        ans=0;dfs(1,1,1);
        printf("%d\n",ans);
    }
    return 0;
}

 

Luogu4980 【模板】Polya定理(Polya定理+欧拉函数)

原文:https://www.cnblogs.com/Gloid/p/10164378.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!