二叉树的克隆操作:
SharedPointer< BTree<T> > clone() const
二叉树的克隆:

在BTree.h中实现二叉树的克隆操作:
protected:
    BTreeNode<T>* clone(BTreeNode<T>* node) const
    {
        BTreeNode<T>* ret = NULL;
        if( node != NULL )
        {
            ret = BTreeNode<T>::NewNode();
            if( ret != NULL )
            {
                ret->value = node->value;
                ret->left = clone(node->left);
                ret->right = clone(node->right);
                if( ret->left != NULL )
                {
                    ret->left->parent = ret;
                }
                if( ret->right != NULL )
                {
                    ret->right->parent = ret;
                }
            }
            else
            {
                THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create new node ...");
            }
        }
        return ret;
    }
public:
    SharedPointer< BTree<T> > clone() const
    {
        BTree<T>* ret = new BTree<T>();
        if( ret != NULL )
        {
            ret->m_root = clone(root());
        }
        else
        {
            THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create new tree ...");
        }
        return ret;
    }
二叉树比较操作的定义:
bool operator == (const BTree<T>& btree)bool operator != (const BTree<T>& btree)
二叉树的比较:

在BTree.h中实现二叉树的比较操作:
protected:
    bool equal(BTreeNode<T>* lh, BTreeNode<T>* rh) const
    {
        if( lh == rh )
        {
            return true;
        }
        else if( (lh != NULL) && (rh != NULL) )
        {
            return (lh->value == rh->value) && equal(lh->left, rh->left) && equal(lh->right, rh->right);
        }
        else
        {
            return false;
        }
    }
public:
    bool operator == (const BTree<T>& btree)
    {
        return equal(root(), btree.root());
    }
    bool operator != (const BTree<T>& btree)
    {
        return !(*this == btree);
    }
统一mian.cpp测试:
#include <iostream>
#include "BTree.h"
using namespace std;
using namespace StLib;
int main()
{
    BTree<int> bt;
    BTreeNode<int>* n = NULL;
    bt.insert(1, NULL);
    n = bt.find(1);
    bt.insert(2, n);
    bt.insert(3, n);
    n = bt.find(2);
    bt.insert(4, n);
    bt.insert(5, n);
    n = bt.find(4);
    bt.insert(8, n);
    bt.insert(9, n);
    n = bt.find(5);
    bt.insert(10, n);
    n = bt.find(3);
    bt.insert(6, n);
    bt.insert(7, n);
    SharedPointer< BTree<int> > btClone = bt.clone();
    int a[] = {8, 9, 10, 6, 7};
    cout << "Clone: " << endl;
    for(int i=0; i<5; i++)
    {
        TreeNode<int>* node = btClone->find(a[i]);
        while( node )
        {
            cout << node->value << " ";
            node = node->parent;
        }
        cout << endl;
    }
    cout << endl;
    cout << "Old BTree: " << endl;
    for(int i=0; i<5; i++)
    {
        TreeNode<int>* node = bt.find(a[i]);
        while( node )
        {
            cout << node->value << " ";
            node = node->parent;
        }
        cout << endl;
    }
    cout << endl;
    cout << "bt == *btClone : " << (bt == *btClone) << endl;
    return 0;
}
运行结果为:
Clone: 
8 4 2 1 
9 4 2 1 
10 5 2 1 
6 3 1 
7 3 1 
Old BTree: 
8 4 2 1 
9 4 2 1 
10 5 2 1 
6 3 1 
7 3 1 
bt == *btClone : 1
二叉树的相加操作:
SharedPointer< BTree<T> > add(const BTree<T>& btree) const

二叉树的加法:

在BTree.h中实现二叉树的相加操作:
protected:
    BTreeNode<T>* add(BTreeNode<T>* lh, BTreeNode<T>* rh) const
    {
        BTreeNode<T>* ret = NULL;
        if( (lh == NULL) && (rh != NULL) )
        {
            ret = clone(rh);
        }
        else if( (lh != NULL) && (rh == NULL) )
        {
            ret = clone(lh);
        }
        else if( (lh != NULL) && (rh != NULL) )
        {
            ret = BTreeNode<T>::NewNode();
            if( ret != NULL )
            {
                ret->value = lh->value + rh->value;
                ret->left = add(lh->left, rh->left);
                ret->right = add(lh->right, rh->right);
                if( ret->left != NULL )
                {
                    ret->left->parent = ret;
                }
                if( ret->right != NULL )
                {
                    ret->right->parent = ret;
                }
            }
            else
            {
                THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create new node ...");
            }
        }
        return ret;
    }
public:
    SharedPointer< BTree<T> > add(const BTree<T>& btree) const
    {
        BTree<T>* ret = new BTree<T>();
        if( ret != NULL )
        {
            ret->m_root = add(root(), btree.root());
        }
        else
        {
            THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create new tree ...");
        }
        return ret;
    }
mian.cpp测试:
#include <iostream>
#include "BTree.h"
using namespace std;
using namespace StLib;
int main()
{
    BTree<int> bt;
    BTreeNode<int>* n = NULL;
    bt.insert(1, NULL);
    n = bt.find(1);
    bt.insert(2, n);
    bt.insert(3, n);
    n = bt.find(2);
    bt.insert(4, n);
    bt.insert(5, n);
    n = bt.find(4);
    bt.insert(8, n);
    bt.insert(9, n);
    n = bt.find(5);
    bt.insert(10, n);
    n = bt.find(3);
    bt.insert(6, n);
    bt.insert(7, n);
    BTree<int> nbt;
    nbt.insert(0, NULL);
    n = nbt.find(0);
    nbt.insert(6, n);
    nbt.insert(2, n);
    n = nbt.find(2);
    nbt.insert(7, n);
    nbt.insert(8, n);
    SharedPointer< BTree<int> > r = bt.add(nbt);
    int a[] = {8, 9, 10, 13, 5};
    cout << "Add result: " << endl;
    for(int i=0; i<5; i++)
    {
        TreeNode<int>* node = r->find(a[i]);
        while( node )
        {
            cout << node->value << " ";
            node = node->parent;
        }
        cout << endl;
    }
    cout << endl;
    SharedPointer< Array<int> > tr = r->traversal(PreOrder);
    cout << "先序遍历:" << endl;
    for(int i=0; i<(*tr).length(); i++)
    {
        cout << (*tr)[i] << " ";
    }
    cout << endl;
    return 0;
}
运行结果为:
Add result: 
8 1 
9 4 8 1 
10 5 8 1 
13 5 1 
5 8 1 
先序遍历:
1 8 4 8 9 5 10 5 13 15 
什么是线索化二叉树?
如何对二叉树进行线索化?
思维过程:

二叉树的线索化:

本节目标:
traversal(order, queue)BTTraversal::LevelOrderBTreeNode<T>* thread(BTTraversal order)层次遍历算法小结:
层次遍历算法示例:


函数接口设计:
BTreeNode<T>* thread(BTTraversal order)
线索化流程:

队列中结点的连接算法 [ connect(queue) ]:

枚举中加入层次遍历:
enum BTTraversal
{
    PreOrder,
    InOrder,
    PostOrder,
    LevelOrder
};
二叉树的线索化:
protected:
    void levelOrderTraversal(BTreeNode<T>* node, LinkQueue<BTreeNode<T>*>& queue) // 层次遍历
    {
        if( node != NULL )
        {
            LinkQueue<BTreeNode<T>*> tmp;
            tmp.add(node);
            while( tmp.length() > 0 )
            {
                BTreeNode<T>* n = tmp.front();
                if( n->left != NULL )
                {
                    tmp.add(n->left);
                }
                if( n->right != NULL )
                {
                    tmp.add(n->right);
                }
                tmp.remove();
                queue.add(n);
            }
        }
    }
    void traversal(BTTraversal order, LinkQueue<BTreeNode<T>*>& queue)
    {
        switch (order)
        {
            case PreOrder:
                preOrderTraversal(root(), queue);
                break;
            case InOrder:
                inOrderTraversal(root(), queue);
                break;
            case PostOrder:
                postOrderTraversal(root(), queue);
                break;
            case LevelOrder:
                levelOrderTraversal(root(), queue);
                break;
            default:
                THROW_EXCEPTION(InvalidParameterException, "Parameter order is invalid ...");
                break;
        }
    }
    BTreeNode<T>* connect(LinkQueue<BTreeNode<T>*>& queue)
    {
        BTreeNode<T>* ret = NULL;
        if( queue.length() > 0 )
        {
            ret = queue.front();
            BTreeNode<T>* slider = queue.front();
            queue.remove();
            slider->left = NULL;
            while( queue.length() > 0 )
            {
                slider->right = queue.front();
                queue.front()->left = slider;
                slider = queue.front();
                queue.remove();
            }
            slider->right = NULL;
        }
        return ret;
    }
public:
    SharedPointer< Array<T> > traversal(BTTraversal order)
    {
        DynamicArray<T>* ret = NULL;
        LinkQueue<BTreeNode<T>*> queue;
        traversal(order, queue);
        ret = new DynamicArray<T>(queue.length());
        if( ret != NULL )
        {
            for(int i=0; i<ret->length(); i++, queue.remove())
            {
                ret->set(i, queue.front()->value);
            }
        }
        else
        {
            THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create return array ...");
        }
        return ret;
    }
    BTreeNode<T>* thread(BTTraversal order)
    {
        BTreeNode<T>* ret = NULL;
        LinkQueue<BTreeNode<T>*> queue;
        traversal(order, queue);
        ret = connect(queue);
        this->m_root = NULL;
        m_queue.clear();
        return ret;
    }
main.cpp测试:
#include <iostream>
#include "BTree.h"
using namespace std;
using namespace StLib;
int main()
{
    BTree<int> bt;
    BTreeNode<int>* n = NULL;
    bt.insert(1, NULL);
    n = bt.find(1);
    bt.insert(2, n);
    bt.insert(3, n);
    n = bt.find(2);
    bt.insert(4, n);
    bt.insert(5, n);
    n = bt.find(4);
    bt.insert(8, n);
    bt.insert(9, n);
    n = bt.find(5);
    bt.insert(10, n);
    n = bt.find(3);
    bt.insert(6, n);
    bt.insert(7, n);
    SharedPointer< Array<int> > tr = bt.traversal(LevelOrder);
    for(int i=0; i<(*tr).length(); i++)
    {
        cout << (*tr)[i] << " ";
    }
    cout << endl;
    BTreeNode<int>* head = bt.thread(LevelOrder);
    while( head != NULL )
    {
        cout << head->value << " ";
        head = head->right;
    }
    cout << endl;
    return 0;
}
运行结果为:
1 2 3 4 5 6 7 8 9 10 
1 2 3 4 5 6 7 8 9 10 
准备代码:
#include <iostream>
#include "BTree.h"
using namespace std;
using namespace StLib;
template < typename T >
BTreeNode<T>* createTree()
{
    static BTreeNode<int> ns[9];
    for(int i=0; i<9; i++)
    {
        ns[i].value = i;
        ns[i].parent = NULL;
        ns[i].left = NULL;
        ns[i].right = NULL;
    }
    ns[0].left = &ns[1];
    ns[0].right = &ns[2];
    ns[1].parent = &ns[0];
    ns[2].parent = &ns[0];
    ns[1].left = &ns[3];
    ns[1].right = NULL;
    ns[3].parent = &ns[1];
    ns[2].left = &ns[4];
    ns[2].right = &ns[5];
    ns[4].parent = &ns[2];
    ns[5].parent = &ns[2];
    ns[3].left = NULL;
    ns[3].right = &ns[6];
    ns[6].parent = &ns[3];
    ns[4].left = &ns[7];
    ns[4].right = NULL;
    ns[7].parent = &ns[4];
    ns[5].left = &ns[8];
    ns[5].right = NULL;
    ns[8].parent = &ns[5];
    return ns;
}
template < typename T >
void printInOrder(BTreeNode<T>* node)
{
    if( node != NULL )
    {
        printInOrder(node->left);
        cout << node->value <<" ";
        printInOrder(node->right);
    }
}
template < typename T >
void printDualList(BTreeNode<T>* node)
{
    BTreeNode<T>* g = node;
    cout << "head -> tail: " << endl;
    while( node != NULL )
    {
        cout << node->value << " ";
        g = node;
        node = node->right;
    }
    cout << endl;
    cout << "tail -> head: " << endl;
    while( g != NULL )
    {
        cout << g->value << " ";
        g = g->left;
    }
    cout << endl;
}
int main()
{
    BTreeNode<int>* ns = createTree<int>();
    printInOrder(ns);
    cout << endl;
    return 0;
}
运行结果为:
3 6 1 0 7 4 2 8 5 
面试题一:

结点中包含指向父结点的指针:

单度结点删除(结点中包含指向父结点的指针):
template < typename T >
BTreeNode<T>* delOdd1(BTreeNode<T>* node)
{
    BTreeNode<T>* ret = NULL;
    if( node != NULL )
    {
        if(((node->left != NULL) && (node->right == NULL)) ||
           ((node->left == NULL) && (node->right != NULL)) )
        {
            BTreeNode<T>* parent = dynamic_cast<BTreeNode<T>*>(node->parent);
            BTreeNode<T>* node_child = (node->left != NULL) ? node->left : node->right;
            if( parent != NULL )
            {
                BTreeNode<T>*& parent_child = (parent->left == node) ? parent->left : parent->right;
                parent_child = node_child;
                node_child->parent = parent;
            }
            else
            {
                node_child->parent = NULL;
            }
            if( node->flag() )
            {
                delete node;
            }
            ret = delOdd1(node_child);
        }
        else
        {
            delOdd1(node->left);
            delOdd1(node->right);
            ret = node;
        }
    }
    return ret;
}
int main()
{
    BTreeNode<int>* ns = createTree<int>();
    printInOrder(ns);
    cout << endl;
    ns = delOdd1(ns);
    printInOrder(ns);
    cout << endl;
    int a[] = {6, 7, 8};
    for(int i=0; i<3; i++)
    {
        TreeNode<int>* n = ns + a[i];
        while( n != NULL )
        {
            cout << n->value << " ";
            n = n->parent;
        }
        cout << endl;
    }
    return 0;
}
运行结果为:
3 6 1 0 7 4 2 8 5 
6 0 7 2 8 
6 0 
7 2 0 
8 2 0 
结点中只包含左右孩子指针:

单度结点删除(结点中只包含左右孩子指针):
template < typename T >
void delOdd2(BTreeNode<T>*& node)
{
    if( node != NULL )
    {
        if(((node->left != NULL) && (node->right == NULL)) ||
           ((node->left == NULL) && (node->right != NULL)) )
        {
            BTreeNode<T>* node_child = (node->left != NULL) ? node->left : node->right;
            if( node->flag() )
            {
                delete node;
            }
            node = node_child;
            delOdd2(node);
        }
        else
        {
            delOdd2(node->left);
            delOdd2(node->right);
        }
    }
}
int main()
{
    BTreeNode<int>* ns = createTree<int>();
    printInOrder(ns);
    cout << endl;
    delOdd2(ns);
    printInOrder(ns);
    cout << endl;
    return 0;
}
运行结果为:
3 6 1 0 7 4 2 8 5 
6 0 7 2 8 
面试题二:

解法一:在中序遍历的同时进行线索化

定义功能:inOrderThread(node, pre)

中序线索化二叉树:
template < typename T >
void inOrderThread(BTreeNode<T>* node, BTreeNode<T>*& pre)
{
    if( node != NULL )
    {
        inOrderThread(node->left, pre);
        node->left = pre;
        if( pre != NULL )
        {
            pre->right = node;
        }
        pre = node;
        inOrderThread(node->right, pre);
    }
}
template < typename T >
BTreeNode<T>* inOrderThread1(BTreeNode<T>* node)
{
    BTreeNode<T>* pre = NULL;
    inOrderThread(node, pre);
    while( (node != NULL) && (node->left != NULL) )
    {
        node = node->left;
    }
    return node;
}
int main()
{
    BTreeNode<int>* ns = createTree<int>();
    printInOrder(ns);
    cout << endl;
    delOdd2(ns);
    printInOrder(ns);
    cout << endl;
    ns = inOrderThread1(ns);
    printDualList(ns);
    return 0;
}
运行结果为:
3 6 1 0 7 4 2 8 5 
6 0 7 2 8 
head -> tail: 
6 0 7 2 8 
tail -> head: 
8 2 7 0 6 
解法二:中序遍历的结点次序正好是结点的水平次序

定义功能:inOrderThread(node, head, tail)

中序线索化二叉树:
template < typename T >
void inOrderThread(BTreeNode<T>* node, BTreeNode<T>*& head, BTreeNode<T>*& tail)
{
    if( node != NULL )
    {
        BTreeNode<T>* h = NULL;
        BTreeNode<T>* t = NULL;
        inOrderThread(node->left, h, t);
        node->left = t;
        if( t != NULL )
        {
            t->right = node;
        }
        head = (h != NULL) ? h : node;
        h = NULL;
        t = NULL;
        inOrderThread(node->right, h, t);
        node->right = h;
        if( h != NULL )
        {
            h->left = node;
        }
        tail = (t != NULL) ? t : node;
    }
}
template < typename T >
BTreeNode<T>* inOrderThread2(BTreeNode<T>* node)
{
    BTreeNode<T>* head = NULL;
    BTreeNode<T>* tail = NULL;
    inOrderThread(node, head, tail);
    return head;
}
int main()
{
    BTreeNode<int>* ns = createTree<int>();
    printInOrder(ns);
    cout << endl;
    ns = inOrderThread2(ns);
    printDualList(ns);
    return 0;
}
运行结果为:
3 6 1 0 7 4 2 8 5 
head -> tail: 
3 6 1 0 7 4 2 8 5 
tail -> head: 
5 8 2 4 7 0 1 6 3 
原文:https://www.cnblogs.com/PyLearn/p/10165013.html