首页 > 其他 > 详细

今日学习

时间:2018-12-23 20:17:08      阅读:151      评论:0      收藏:0      [点我收藏+]

1、查看帮助文档

import matplotlib.pyplot as plt
help(plt.plot)

 2、arr[:,],“:”表示全选每行,“,”后再选取指定的列

ma = np.array([[1,3,2],[3,4,6],[3,33,6]])
ma.shape
print (ma[:,2])
print (ma[:,1:3])

 3、pandas中的DataFrame基本操作

构造函数

方法描述
DataFrame([data, index, columns, dtype, copy]) 构造数据框

属性和数据

方法描述
Axes index: row labels;columns: column labels
DataFrame.as_matrix([columns]) 转换为矩阵
DataFrame.dtypes 返回数据的类型
DataFrame.ftypes Return the ftypes (indication of sparse/dense and dtype) in this object.
DataFrame.get_dtype_counts() 返回数据框数据类型的个数
DataFrame.get_ftype_counts() Return the counts of ftypes in this object.
DataFrame.select_dtypes([include, exclude]) 根据数据类型选取子数据框
DataFrame.values Numpy的展示方式
DataFrame.axes 返回横纵坐标的标签名
DataFrame.ndim 返回数据框的纬度
DataFrame.size 返回数据框元素的个数
DataFrame.shape 返回数据框的形状
DataFrame.memory_usage([index, deep]) Memory usage of DataFrame columns.

描述统计学

方法描述
DataFrame.abs() 返回绝对值
DataFrame.all([axis, bool_only, skipna, level]) Return whether all elements are True over requested axis
DataFrame.any([axis, bool_only, skipna, level]) Return whether any element is True over requested axis
DataFrame.clip([lower, upper, axis]) Trim values at input threshold(s).
DataFrame.clip_lower(threshold[, axis]) Return copy of the input with values below given value(s) truncated.
DataFrame.clip_upper(threshold[, axis]) Return copy of input with values above given value(s) truncated.
DataFrame.corr([method, min_periods]) 返回本数据框成对列的相关性系数
DataFrame.corrwith(other[, axis, drop]) 返回不同数据框的相关性
DataFrame.count([axis, level, numeric_only]) 返回非空元素的个数
DataFrame.cov([min_periods]) 计算协方差
DataFrame.cummax([axis, skipna]) Return cumulative max over requested axis.
DataFrame.cummin([axis, skipna]) Return cumulative minimum over requested axis.
DataFrame.cumprod([axis, skipna]) 返回累积
DataFrame.cumsum([axis, skipna]) 返回累和
DataFrame.describe([percentiles, include, …]) 整体描述数据框
DataFrame.diff([periods, axis]) 1st discrete difference of object
DataFrame.eval(expr[, inplace]) Evaluate an expression in the context of the calling DataFrame instance.
DataFrame.kurt([axis, skipna, level, …]) 返回无偏峰度Fisher’s (kurtosis of normal == 0.0).
DataFrame.mad([axis, skipna, level]) 返回偏差
DataFrame.max([axis, skipna, level, …]) 返回最大值
DataFrame.mean([axis, skipna, level, …]) 返回均值
DataFrame.median([axis, skipna, level, …]) 返回中位数
DataFrame.min([axis, skipna, level, …]) 返回最小值
DataFrame.mode([axis, numeric_only]) 返回众数
DataFrame.pct_change([periods, fill_method, …]) 返回百分比变化
DataFrame.prod([axis, skipna, level, …]) 返回连乘积
DataFrame.quantile([q, axis, numeric_only, …]) 返回分位数
DataFrame.rank([axis, method, numeric_only, …]) 返回数字的排序
DataFrame.round([decimals]) Round a DataFrame to a variable number of decimal places.
DataFrame.sem([axis, skipna, level, ddof, …]) 返回无偏标准误
DataFrame.skew([axis, skipna, level, …]) 返回无偏偏度
DataFrame.sum([axis, skipna, level, …]) 求和
DataFrame.std([axis, skipna, level, ddof, …]) 返回标准误差
DataFrame.var([axis, skipna, level, ddof, …]) 返回无偏误差

 

今日学习

原文:https://www.cnblogs.com/strong-FE/p/10163615.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!