我觉得自己的数学也是够差的……一点思路也没有……
考虑容斥,首先\(lim=min(m,n/S)\),设\(f[i]\)表示出现恰好\(S\)次的元素大于等于\(i\)种的情况,我们随便选\(i\)种颜色放\(S\)次,选的方法数有\(C_m^i\)种,然后染色可以看做是一个类似全排列的东西,每连续的几个染上同样的颜色,那么方案数为\(\frac{n!}{(S!)^i(n-S*i)!}\),前面颜色已经选定了,后面的每个有\(m-i\)种颜色可选,所以还要乘上一个\((m-i)^{n-S*i}\)
综上,可得\[f_i=C_m^i\frac{n!}{(S!)^i(n-S*i)!}(m-i)^{n-S*i}\]
然后考虑容斥,设\(g_i\)表示元素个数恰好等于\(i\)的情况总数,那么根据容斥原理,有\[g_i=\sum_{j=i}^{lim}(-1)^{j-i}C_j^if_j\]
然后开始推柿子\[g_i=\sum_{j=i}^{lim}\frac{(-1)^{j-i}j!}{i!(j-i)!}f_j\]
\[g_ii!=\sum_{j=i}^{lim}\frac{(-1)^{j-i}}{(j-i)!}f_jj_!\]
于是定义多项式\(F_i=f_jj!\),\(A_i=\frac{(-1)^{n-i}}{(n-i)!}\),\(G_{i+lim}=g_ii!\),那么不难发现上面那个式子其实是个卷积,即\[G_{lim+i}=\sum_{j+k=lim+i}A_jF_k\]
于是用\(NTT\)计算出\(G\),然后更新答案即可
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R int x){
if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++K]=z[Z],--Z);sr[++K]='\n';
}
const int N=5e5+5,M=1e7+5,P=1004535809,Gi=334845270;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int A[N],B[N],w[N],fac[M],inv[M],r[N],O[N],n,m,S,lim,len=1,l,ans;
inline int C(R int n,R int m){
if(m>n)return 0;
return mul(fac[n],mul(inv[m],inv[n-m]));
}
void init(){
inv[0]=fac[0]=fac[1]=1;fp(i,2,lim)fac[i]=mul(fac[i-1],i);
inv[lim]=ksm(fac[lim],P-2);fd(i,lim-1,1)inv[i]=mul(inv[i+1],i+1);
}
void NTT(int *A,int ty){
fp(i,0,len-1)if(i<r[i])swap(A[i],A[r[i]]);
for(R int mid=1;mid<len;mid<<=1){
R int I=(mid<<1),Wn=ksm(ty==1?3:Gi,(P-1)/I);O[0]=1;
fp(i,1,mid-1)O[i]=mul(O[i-1],Wn);
for(R int j=0;j<len;j+=I)for(R int k=0;k<mid;++k){
int x=A[j+k],y=mul(O[k],A[j+k+mid]);
A[j+k]=add(x,y),A[j+k+mid]=dec(x,y);
}
}if(ty==-1)for(R int i=0,inv=ksm(len,P-2);i<len;++i)A[i]=mul(A[i],inv);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),S=read(),lim=max(n,m);
init();fp(i,0,m)w[i]=read();lim=min(m,n/S);
fp(i,0,lim)A[i]=mul(C(m,i),mul(fac[n],mul(ksm(m-i,n-S*i),mul(fac[i],ksm(mul(ksm(fac[S],i),fac[n-S*i]),P-2)))));
fp(i,0,lim){
A[i]=mul(C(m,i),mul(fac[n],ksm(m-i,n-S*i)));
A[i]=mul(A[i],mul(fac[i],ksm(mul(ksm(fac[S],i),fac[n-S*i]),P-2)));
}
fp(i,0,lim){
B[i]=inv[lim-i];
if((lim-i)&1)B[i]=P-B[i];
}while(len<=lim+lim)len<<=1,++l;
fp(i,0,len-1)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
NTT(A,1),NTT(B,1);
fp(i,0,len-1)A[i]=mul(A[i],B[i]);
NTT(A,-1);fp(i,0,lim)ans=add(ans,mul(w[i],mul(A[lim+i],inv[i])));
printf("%d\n",ans);return 0;
}
原文:https://www.cnblogs.com/bztMinamoto/p/10176843.html