自适应学习率衰减
tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)
退化学习率,衰减学习率,将指数衰减应用于学习速率。
计算公式:
decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
learning_rate = 0.1 # 初始学习速率时0.1
decay_rate = 0.96 # 衰减率
global_steps = 1000 # 总的迭代次数
decay_steps = 100 # 衰减次数
global_ = tf.Variable(tf.constant(0))
c = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True)
d = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=False)
T_C = []
F_D = []
with tf.Session() as sess:
for i in range(global_steps):
T_c = sess.run(c, feed_dict={global_: i})
T_C.append(T_c)
F_d = sess.run(d, feed_dict={global_: i})
F_D.append(F_d)
plt.figure(1)
plt.plot(range(global_steps), F_D, ‘r-‘)# "-"表示折线图,r表示红色,b表示蓝色
plt.plot(range(global_steps), T_C, ‘b-‘)
plt.show()
https://i.loli.net/2018/02/18/5a88f98e71ea7.png
http://www.cnblogs.com/cloud-ken/p/8452689.html
原文:https://www.cnblogs.com/feitianhou/p/10176907.html