1. 读取数据集
2. 训练集与测试集划分
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
data = load_boston()
x_train,x_test,y_train,y_test = train_test_split(data.data,data.target,test_size=0.3)
print(x_train.shape,y_train.shape)
3. 线性回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。
from sklearn.linear_model import LinearRegression
mlr = LinearRegression()
mlr.fit(x_train,y_train)
print(‘系数‘,mlr.coef_,"\n截距",mlr.intercept_)
from sklearn.metrics import regression
y_predict = mlr.predict(x_test)
print("预测的均方误差:", regression.mean_squared_error(y_test,y_predict))
print("预测的平均绝对误差:", regression.mean_absolute_error(y_test,y_predict))
print("模型的分数:",mlr.score(x_test, y_test))
原文:https://www.cnblogs.com/huang201606050002/p/10182484.html