定义: 给定一门语言,定义它的文法的一种表示, 并定义一个解释器, 该解释器使用该表示来解释语言中的句子.
其类图如下:
其中的角色说明:
抽象表达式代码:
抽象表达式通常只有一个方法, 抽象表达式是生成语法集合的关键, 每个语法集合完成指定语法解析任务, 它是通过递归调用的方式,最终由最小的语法单元进行解析完成
终结符表达式代码:
通常,终结符表达式比较简单,主要是处理场景元素和数据的转换
非终结符表达式:
每个非终结符表达式都代表了一个文法规则, 并且每个文法规则都只关心自己周边的文法规则的结果, 因此这就产生了每个非终结符表达式调用自己周边的非终结符表达式, 然后最终、最小的文法规则就是终结符表达式,终结符表达式的概念就是如此, 不能够再参与比自己更小的文法运算了
场景类代码:
通常Client是一个封装类, 封装的结果就是传递进来一个规范语法文件,解析器分析后产生结果并返回,避免了调用者与语法解析器的耦合关系
解释器模式的优点:
解释器是一个简单语法分析工具,它最显著的优点就是扩展性,修改语法规则只要修改相应的非终结符表达式就可以了, 若扩展语法, 则只要增加非终结符就可以了
解释器模式的缺点:
解释器模式使用的场景:
尽量不要在重要的模块中使用解释器模式,否则维护会是一个很大的问题.在项目中可以使用shell、JRuby等脚本语言来代替解释器模式,你不Java编译型语言的不足.
解释器模式在实际的系统开发中使用的非常少, 因为它会引起效率、性能以及维护等问题,一般在大中型的框架型项目中能够找到它的身影, 如一些数据分析工具、报表设计工具、科学计算工具等, 若你确实遇到"一种特定类型的问题发生的频率足够高"的情况,准备使用解释器模式时, 可以考虑一下 Expression4J、MESP、Jep等开源的解析工具包,功能都异常强大,而且非常容易使用,效率也还不错,实现大多数的数学运算完全没有问题.
可以关注一下鄙人的公众号, 谢谢各位了!
原文:https://www.cnblogs.com/hujingnb/p/10171605.html