首页 > 其他 > 详细

斯特林数

时间:2018-12-28 23:58:46      阅读:284      评论:0      收藏:0      [点我收藏+]

第一类:
S(n,m)表示把n个元素组合成m个圆排列的方案数(注意是圆排列,n个元素的圆排列方案数:n!/n=(n-1)!)

递推式:

技术分享图片

考虑最后一个放在哪里。

 

性质:

技术分享图片

 

例题:HDU 4372 Count the Buildings——第一类斯特林数

 

 

第二类:

s(n,m)表示把n个不同元素放进m个相同盒子的方案数(m个集合)

还是考虑最后一个放在哪里

技术分享图片

技术分享图片

 

 第二类斯特林数组合意义比较强大(毕竟没有排列苛刻的限制嘛)

技术分享图片

证明考虑容斥,枚举哪些个盒子一定不放球,其他爱放不放(Venn图)

 

斯特林数

原文:https://www.cnblogs.com/Miracevin/p/10193387.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!