TIM模块定时器向上溢出 & 输出比较
首先我们必须肯定ST公司的实力,也承认STM32的确是一款非常不错的Cortex-M3核单片机,但是,他的手册实在是让人觉得无法理解,尤其是其中的TIM模块,没有条理可言,看了两天几乎还是不知所云,让人很是郁闷。同时配套的固件库的说明也很难和手册上的寄存器对应起来,研究起来非常费劲!功能强大倒是真的,但至少也应该配套一个让人看的明白的说明吧~~
两天时间研究了STM32定时器的最最基础的部分,把定时器最基础的两个功能实现了,余下的功能有待继续学习。
首先有一点需要注意:FWLib固件库目前的最新版应该是V2.0.x,V1.0.x版本固件库中,TIM1模块被独立出来,调用的函数与其他定时器不同;在V2.0系列版本中,取消了TIM1.h,所有的TIM模块统一调用TIM.h即可。网络上流传的各种代码有许多是基于v1版本的固件库,在移植到v2版本固件库时,需要做些修改。本文的所有程序都是基于V2.0固件库。
以下是定时器向上溢出示例代码:
C语言: TIM1模块产生向上溢出事件
//Step1.时钟设置:启动TIM1
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
//Step2.中断NVIC设置:允许中断,设置优先级
NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_IRQChannel; //更新事件
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //响应优先级1
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //允许中断
NVIC_Init(&NVIC_InitStructure); //写入设置
//Step3.TIM1模块设置
void TIM_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
//TIM1 使用内部时钟
//TIM_InternalClockConfig(TIM1);
//TIM1基本设置
//设置预分频器分频系数71,即APB2=72M, TIM1_CLK=72/72=1MHz
//TIM_Period(TIM1_ARR)=1000,计数器向上计数到1000后产生更新事件,计数值归零
//向上计数模式
//TIM_RepetitionCounter(TIM1_RCR)=0,每次向上溢出都产生更新事件
TIM_BaseInitStructure.TIM_Period = 1000;
TIM_BaseInitStructure.TIM_Prescaler = 71;
TIM_BaseInitStructure.TIM_ClockDivision = 0;
TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);
//清中断,以免一启用中断后立即产生中断
TIM_ClearFlag(TIM1, TIM_FLAG_Update);
//使能TIM1中断源
TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);
//TIM1总开关:开启
TIM_Cmd(TIM1, ENABLE);
}
//Step4.中断服务子程序:
void TIM1_UP_IRQHandler(void)
{
GPIOC->ODR ^= (1<<4); //闪灯
TIM_ClearITPendingBit(TIM1, TIM_FLAG_Update); //清中断
}
下面是输出比较功能实现TIM1_CH1管脚输出指定频率的脉冲:
C语言: TIM1模块实现输出比较,自动翻转并触发中断
//Step1.启动TIM1,同时还要注意给相应功能管脚启动时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
//Step2. PA.8口设置为TIM1的OC1输出口
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
//Step3.使能TIM1的输出比较匹配中断
NVIC_InitStructure.NVIC_IRQChannel = TIM1_CC_IRQChannel;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
//Step4. TIM模块设置
void TIM_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
//TIM1基本计数器设置
TIM_BaseInitStructure.TIM_Period = 0xffff; //这里必须是65535
TIM_BaseInitStructure.TIM_Prescaler = 71; //预分频71,即72分频,得1M
TIM_BaseInitStructure.TIM_ClockDivision = 0;
TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);
//TIM1_OC1模块设置
TIM_OCStructInit(& TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle; //管脚输出模式:翻转
TIM_OCInitStructure.TIM_Pulse = 2000; //翻转周期:2000个脉冲
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //使能TIM1_CH1通道
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出为正逻辑
TIM_OC1Init(TIM1, &TIM_OCInitStructure); //写入配置
//清中断
TIM_ClearFlag(TIM1, TIM_FLAG_CC1);
//TIM1中断源设置,开启相应通道的捕捉比较中断
TIM_ITConfig(TIM1, TIM_IT_CC1, ENABLE);
//TIM1开启
TIM_Cmd(TIM1, ENABLE);
//通道输出使能
TIM_CtrlPWMOutputs(TIM1, ENABLE);
}
Step5.中断服务子程序
void TIM1_CC_IRQHandler(void)
{
u16 capture;
if(TIM_GetITStatus(TIM1, TIM_IT_CC1) == SET)
{
TIM_ClearITPendingBit(TIM1, TIM_IT_CC1 );
capture = TIM_GetCapture1(TIM1);
TIM_SetCompare1(TIM1, capture + 2000);
//这里解释下:
//将TIM1_CCR1的值增加2000,使得下一个TIM事件也需要2000个脉冲,
//另一种方式是清零脉冲计数器
//TIM_SetCounter(TIM2,0x0000);
}
}
关于TIM的操作,要注意的是STM32处理器因为低功耗的需要,各模块需要分别独立开启时钟,所以,一定不要忘记给用到的模块和管脚使能时钟,因为这个原因,浪费了我好多时间阿~~!
TIM模块产生PWM
这个是STM32的PWM输出模式,STM32的TIM1模块是增强型的定时器模块,天生就是为电机控制而生,可以产生3组6路PWM,同时每组2路PWM为互补,并可以带有死区,可以用来驱动H桥。
下面的代码,是利用TIM1模块的1、2通道产生一共4路PWM的代码例子,类似代码也可以参考ST的固件库中相应example
C语言: TIM1模块产生PWM,带死区
//Step1.开启TIM和相应端口时钟
//启动GPIO
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | \
RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,\
ENABLE);
//启动AFIO
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
//启动TIM1
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
//Step2. GPIO做相应设置,为AF输出
//PA.8/9口设置为TIM1的OC1输出口
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
//PB.13/14口设置为TIM1_CH1N和TIM1_CH2N输出口
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
//Step3. TIM模块初始化
void TIM_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
//TIM1基本计数器设置(设置PWM频率)
//频率=TIM1_CLK/(ARR+1)
TIM_BaseInitStructure.TIM_Period = 1000-1;
TIM_BaseInitStructure.TIM_Prescaler = 72-1;
TIM_BaseInitStructure.TIM_ClockDivision = 0;
TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);
//启用ARR的影子寄存器(直到产生更新事件才更改设置)
TIM_ARRPreloadConfig(TIM1, ENABLE);
//TIM1_OC1模块设置(设置1通道占空比)
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
TIM_OCInitStructure.TIM_Pulse = 120;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
//启用CCR1寄存器的影子寄存器(直到产生更新事件才更改设置)
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);
//TIM2_OC2模块设置(设置2通道占空比)
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = 680;
TIM_OC2Init(TIM1, &TIM_OCInitStructure);
//启用CCR2寄存器的影子寄存器(直到产生更新事件才更改设置)
TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);
//死区设置
TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
TIM_BDTRInitStructure.TIM_DeadTime = 0x90; //这里调整死区大小0-0xff
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;
TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);
//TIM1开启
TIM_Cmd(TIM1, ENABLE);
//TIM1_OC通道输出PWM(一定要加)
TIM_CtrlPWMOutputs(TIM1, ENABLE);
}
其实,PWM模块还可以有很多花样可以玩,比方在异常时(如CPU时钟有问题),可以紧急关闭输出,以免发生电路烧毁等严重事故
STM32学习笔记2(TIM模块定时器),布布扣,bubuko.com
原文:http://www.cnblogs.com/dustinzhu/p/3886757.html