有空再编辑。
是学生感觉比较难的数学内容之一,记住以下的常见变形是很有效的。
由于\((n-1)(n-1)<n(n-1)<n^2<n(n+1)<(n+1)(n+1)\),
故由倒数法则得到
\(\cfrac{1}{(n+1)(n+1)}<\cfrac{1}{n(n+1)}<\cfrac{1}{n^2}<\cfrac{1}{n(n-1)}<\cfrac{1}{(n-1)(n-1)}\)
\(\cfrac{1}{(n+1)(n+1)}<\cfrac{1}{(n-1)(n+1)}<\cfrac{1}{n(n-1)}\);
\(\cfrac{1}{(2n-1)(2n+1)}<\cfrac{1}{2n(2n-1)}\);等等。
\(\fbox{例1}\)(2017宝鸡中学第一次月考第21题改编)
已知函数满足\(f(n)-f(n-1)=4(n-1),n\in N^*\),
①求\(f(n)\)的不等式;
分析:如果能意识到\(a_n=f(n)\),则应该想到用累加法求解,得到\(f(n)=2n^2-2n+1\)
②求证:\(\cfrac{1}{f(1)}+\cfrac{1}{f(2)}+\cfrac{1}{f(3)}+\cdots+\cfrac{1}{f(n)}<\cfrac{3}{2}\);
证明:由于\(\cfrac{1}{f(n)}=\cfrac{1}{2n^2-2n+1}<\cfrac{1}{2n^2-2n}=\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n})\)
第一项保持不动,\(\cfrac{1}{f(1)}=1\),
\(\cfrac{1}{f(2)}<\cfrac{1}{2}(\cfrac{1}{1}-\cfrac{1}{2})\);
\(\cfrac{1}{f(3)}<\cfrac{1}{2}(\cfrac{1}{2}-\cfrac{1}{3})\);
\(\cdots\)
\(\cfrac{1}{f(n)}<\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n})\);
故\(\cfrac{1}{f(1)}+\cfrac{1}{f(2)}+\cfrac{1}{f(3)}+\cdots+\cfrac{1}{f(n)}\)
\(=1+\cfrac{1}{2}[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots+(\cfrac{1}{n-1}-\cfrac{1}{n})]\)
\(=1+\cfrac{1}{2}(1-\cfrac{1}{n})=\cfrac{3}{2}-\cfrac{1}{2n}<\cfrac{3}{2}\);
原文:https://www.cnblogs.com/wanghai0666/p/5867164.html