首页 > 其他 > 详细

BZOJ-3-1010: [HNOI2008]玩具装箱toy

时间:2019-01-09 15:31:25      阅读:129      评论:0      收藏:0      [点我收藏+]
dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j-1-L)^2) (j<i)

令f[i]=sum[i]+i,c=1+l

则dp[i]=min(dp[j]+(f[i]-f[j]-c)^2)

1.证明决策单调性

假设在状态i处的k决策优与j决策,即

dp[k]+(f[i]-f[k]-c)^2<=dp[j]+(f[i]-f[j]-c)^2

则对于i后的所有状态t,要证明决策单调性

即dp[k]+(f[t]-f[k]-c)^2<=dp[j]+(f[t]-f[j]-c)^2

只要证

dp[k]+(f[i]+v-f[k]-c)^2<=dp[j]+(f[i]+v-f[j]-c)^2

只要证

dp[k]+(f[i]-f[k]-c)^2+2*v*(f[i]-f[k]-c)+v^2<=dp[j]+(f[i]-f[j]-c)^2+2*v*(f[i]-f[j]-c)+v^2

只要证

2*v*(f[i]-f[k]-c)<=2*v*(f[i]-f[j]-c)

即f[k]>=f[j](显然)

证明完毕

2.求斜率方程

因为dp[k]+(f[i]-f[k]-c)^2<=dp[j]+(f[i]-f[j]-c)^2

展开

dp[k]+f[i]^2-2*f[i]*(f[k]+c)+(f[k]+c)^2<=dp[j]+f[i]^2-2*f[i]*(f[j]+c)+(f[j]+c)^2

即

dp[k]-2*f[i]*(f[k]+c)+(f[k]+c)^2<=dp[j]-2*f[i]*(f[j]+c)+(f[j]+c)^2

即(dp[k]+(f[k]+c)^2-dp[j]-(f[j]+c)^2)/2*(f[k]-f[j])<=f[i]

f[i]是单调递增的,我们使用队列维护一个下凸壳,每次取出队头作为决策

加入决策i时,令队尾为q[r],前一个为q[r-1]

满足斜率(q[r],i)<斜率(q[r-1],q[r])时,显然队尾是无效的,将其弹出

  

BZOJ-3-1010: [HNOI2008]玩具装箱toy

原文:https://www.cnblogs.com/SDUTNING/p/10244544.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!