题目链接:uva 11024 - Circular Lock
题目大意;有个2*2的矩阵,给定p,s,P为p数组中所有元素的最大公约数。s为2*2矩阵的初始状态,每次可以选择一行或是一列同时加1,最终使得sij%P=0
解题思路:gij为aij还需要多少可以是P的倍数,判断g11?g12?g21+g22是P的倍数即可。
/********************
* A + C = a + k1 * p
* B + C = b + k2 * p
* A + D = c + k3 * p
* B + D = d + k4 * p
*
* a - b - c + d + (k1 - k2 - k3 + k4) * p
* = 0;
********************/
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 5;
int s[maxn][maxn], p[maxn][maxn];
inline int gcd (int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
for (int i = 1; i <= 2; i++)
scanf("%d %d %d %d", &s[i][1], &s[i][2], &p[i][1], &p[i][2]);
int P = p[1][1];
for (int i = 1; i <= 2; i++)
for (int j = 1; j <= 2; j++)
P = gcd(P, p[i][j]);
int sum = 0;
for (int i = 1; i <= 2; i++) {
for (int j = 1; j <= 2; j++) {
s[i][j] = P - s[i][j] % P;
if (i == j)
sum += s[i][j];
else
sum -= s[i][j];
}
}
printf("%s\n", sum % P == 0 ? "Yes" : "No");
}
return 0;
}
uva 11024 - Circular Lock(数学),布布扣,bubuko.com
原文:http://blog.csdn.net/keshuai19940722/article/details/38353131