2 2 2 10 10
Case 1: 1 Case 2: 2
给定n和k, 求 n! 能被 k^i 整除时,i 的最大取值。
解题思路:
将k分解质因素,问题变为,(1×2×3×...×n) 要被 ( p1^(i*a1) × p2^(i*a2) × ... × pn^(i*an) ) 整除,即分子中各分母的质因数的幂次要大于等于分母。
所以根据k的各质因素,求出满足各质因数的幂次 分子>=分母 的关系限制i,算出最大的i即可。
这题要用到unsigned long long,比较坑。。
参考代码:
#include <iostream> #include <cstring> #include <cmath> #define INF 9223372036854775807ULL using namespace std; typedef unsigned long long ull; const int MAXN = 10000010; int T, cnt; ull N, K, ans, factorA[MAXN], factorB[MAXN], totFactor, prime[MAXN], totPrime; bool isPrime[MAXN]; void getPrime(ull n) { memset(isPrime, true, sizeof(isPrime)); totPrime = 0; for (ull i = 2; i <= n; i++) { if (isPrime[i]) { prime[++totPrime] = i; } for (ull j = 1; j <= totPrime && i*prime[j] <= n; j++) { isPrime[i*prime[j]] = false; if (i % prime[j] == 0) break; } } } void getFactor(ull n) { /* ull now = n; totFactor = 0; for (ull i = 2; i*i <= n; i++) { if (now % i == 0) { factorA[++totFactor] = i; factorB[totFactor] = 0; while (now % i == 0) { factorB[totFactor]++; now /= i; } } } if (now != 1) { factorA[++totFactor] = now; factorB[totFactor] = 1; } */ totFactor = 0; ull now = n; for (ull i = 1; i <= totPrime && prime[i] <= now; i++) { if (now % prime[i] == 0) { factorA[++totFactor] = prime[i]; factorB[totFactor] = 0; while (now % prime[i] == 0) { factorB[totFactor]++; now /= prime[i]; } } } if (now != 1) { factorA[++totFactor] = now; factorB[totFactor] = 1; } } void solve() { if (K == 1) { cout << "Case " << ++cnt << ": inf" << endl; } else { getFactor(K); ans = INF; for (ull i = 1; i <= totFactor; i++) { ull temp = N, sum = 0; while (temp > 0) { sum += temp / factorA[i]; temp /= factorA[i]; } if (sum / factorB[i] < ans) { ans = sum / factorB[i]; } } cout << "Case " << ++cnt << ": " << ans << endl; } } int main() { ios::sync_with_stdio(false); cin >> T; getPrime(10000000); while (T--) { cin >> N >> K; solve(); } return 0; }
HDU 3988 Harry Potter and the Hide Story(数论-整数和素数),布布扣,bubuko.com
HDU 3988 Harry Potter and the Hide Story(数论-整数和素数)
原文:http://blog.csdn.net/wujysh/article/details/38358555