首页 > 其他 > 详细

A - Character Encoding HDU - 6397 - 方程整数解-容斥原理

时间:2019-01-13 00:43:10      阅读:41      评论:0      收藏:0      [点我收藏+]

标签:就会   target   元素   printf   names   void   mes   nco   tle   

A - Character Encoding

 HDU - 6397 

思路 :

隔板法就是在n个元素间的(n-1)个空中插入k-1个板,可以把n个元素分成k组的方法

普通隔板法
 求方程 x+y+z=10的正整数解的个数。

添元素隔板法
 求方程 x+y+z=10的非负整数解的个数。 那么 增加 3 即转化为 了普通隔板法   

但是这个题呢 还有 < N 的限制 ,那么就需要去除掉  ,分出的块中 有 > = n 的情况 。

就会 有 一块 出现 > =n ,两块 > =n 等等。。 具体 需要根据总数来确定 ,要去除这些情况贡献的解 

发现  如果 有某一块 > = n 那么就转化为了 先把n个  放到 某一块上 ,剩下的 总数 - n  再 进行 分为 m块的 分配,

计算式即为 。 某一块     *    (剩下的 分到 m块上) 但是这样会多减去一些,因为 这些情况中包含了

有 两块  > = n 三块 > =n 等等 。所以 需要 加回来 两块的情况,

#include<bits/stdc++.h>
using namespace std;
#define maxn 234567
#define ll long long
#define mod 998244353
ll n,m,k,inv[maxn+10],A[maxn+10],ans,t;
ll qpow(ll a,ll b)
{
    ll re=1;
    while(b)
    {
        if(b%2)
            re=(re*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return re;
}
void init()
{
    A[0]=inv[0]=1;
    for(int i=1; i<=maxn; i++)
    {
        A[i]=(A[i-1]*i)%mod;
        inv[i]=qpow(A[i],mod-2)%mod;
    }
}
ll C(ll a,ll b)
{
    if(b<a)return 0;
    return (A[b]*inv[a]%mod*inv[b-a])%mod;
}
int main()
{
    init();
    scanf("%lld",&t);
    while(t--)
    {
        ans=0;
        scanf("%lld%lld%lld",&n,&m,&k);
        if(k==0)printf("1\n");
        else if(k>m*(n-1))printf("0\n");
        else if(k<n) printf("%lld\n",C(m-1,m+k-1));
        else
        {
            ll x=-1;
            ans=C(m-1,m+k-1);
            for(int i=1; i<=m; i++)
            {
                ans=(ans+C(i,m)*x%mod*C(m-1,k+m-1-i*n)%mod+mod)%mod;
                x*=-1;
            }
            printf("%lld\n",ans);
        }
    }
    return 0;
}

  

A - Character Encoding HDU - 6397 - 方程整数解-容斥原理

标签:就会   target   元素   printf   names   void   mes   nco   tle   

原文:https://www.cnblogs.com/SDUTNING/p/10261605.html

(0)
(0)
   
举报
评论 一句话评论(0
0条  
登录后才能评论!
© 2014 bubuko.com 版权所有 鲁ICP备09046678号-4
打开技术之扣,分享程序人生!
             

鲁公网安备 37021202000002号