首页 > 其他 > 详细

洛谷 3768 - 简单的数学题

时间:2019-01-16 21:10:52      阅读:179      评论:0      收藏:0      [点我收藏+]

根据Crash的数字表格,很容易可以将式子化简为

\[\begin{aligned} Ans &= \sum\limits_{i = 1}^n \sum\limits_{j = 1} ij(i, j) \\ &= \sum\limits_{d = 1}^n d^3 \sum\limits_{k = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(k) k^2 \left( \sum\limits_{i = 1}^{\left\lfloor\frac{n}{kd}\right\rfloor} i \right)^2 \end{aligned}\]

感觉 \(d, k\) 放在一起式子无法继续化简,主要是有 \(kd\) 存在,故令 \(T = kd\) ,则有

\[Ans = \sum\limits_{T = 1}^n \left( \sum\limits_{i = 1}^{\left\lfloor\frac{n}{T}\right\rfloor} i \right)^2 T^2 \sum\limits_{d | T} d \mu(\frac{T}{d})\]

那么考虑整除分块,现在需要处理的是后半部分

通过观察(看题解)可以发现, \(\sum\limits_{d | T} d \mu(\frac{T}{d})\) 可以看成 \(\mu * id\) ,故可替换成 \(\phi(T)\) ,则有

\[Ans = \sum\limits_{T = 1}^n \left( \sum\limits_{i = 1}^{\left\lfloor\frac{n}{T}\right\rfloor} i \right)^2 T^2 \phi(T)\]

现在考虑将 \(T^2 \phi(T)\) 部分用杜教筛解决

\[h(n) = \sum\limits_{d | n} d^2 \phi(d) g(\frac{n}{d})\]

为了消除 \(d^2\) ,令 \(g(\frac{n}{d}) = n^2\) ,则有

\[h(n) = n^3\]

故得

\[S(n) = \sum\limits_{i = 1}^n i^3 - \sum\limits_{d = 2}^n d^2 S(\left\lfloor\frac{n}{d}\right\rfloor)\]

又(通过看题解)有一个知识点

\[\sum\limits_{i = 1}^n i^3 = \left( \sum\limits_{i = 1}^n i \right)\]

那么就可以直接杜教筛了

至于复杂度,将最外围的整除分块与杜教筛看为一体,故复杂度为 \(O (n^{\frac{2}{3}})\)

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <tr1/unordered_map>

using namespace std;

typedef long long LL;

const int MAXN = 6e06 + 10;

LL MOD, N;

LL power (LL x, LL p) {
    LL cnt = 1;
    while (p) {
        if (p & 1)
            cnt = cnt * x % MOD;
        x = x * x % MOD;
        p >>= 1;
    }
    return cnt;
}
LL inv2, inv6;

int prime[MAXN];
int vis[MAXN]= {0};
int pcnt = 0;
LL phi[MAXN]= {0};
LL sumphi[MAXN]= {0};
int MAX = 6e06;
void linear_sieve () {
    phi[1] = 1;
    for (int i = 2; i <= MAX; i ++) {
        if (! vis[i]) {
            prime[++ pcnt] = i;
            phi[i] = i - 1;
        }
        for (int j = 1; j <= pcnt && i * prime[j] <= MAX; j ++) {
            vis[i * prime[j]] = 1;
            if (! (i % prime[j])) {
                phi[i * prime[j]] = phi[i] * 1ll * prime[j] % MOD;
                break;
            }
            phi[i * prime[j]] = phi[i] * 1ll * (prime[j] - 1) % MOD;
        }
    }
    for (int i = 1; i <= MAX; i ++)
        sumphi[i] = (sumphi[i - 1] + 1ll * i % MOD * 1ll * i % MOD * phi[i] % MOD) % MOD;
}

tr1::unordered_map<LL, LL> maphi;
inline LL sqr (LL x) {
    return x * x % MOD;
}
inline LL eqm (LL n) {
    return (n + 1) % MOD * (n % MOD) % MOD * (2 * n % MOD + 1) % MOD * inv6 % MOD;
}
inline LL oseqm (LL n) {
    return n % MOD * ((n + 1) % MOD) % MOD * inv2 % MOD;
}
LL phi_sieve (LL n) {
    if (n <= MAX)
        return sumphi[n];
    if (maphi[n])
        return maphi[n];
    LL total = sqr (oseqm (n));
    for (LL l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        total = (total - (eqm (r) - eqm (l - 1) + MOD) % MOD * phi_sieve (n / l) % MOD + MOD) % MOD;
    }
    return maphi[n] = total;
}

LL Solve () {
    LL ans = 0;
    for (LL l = 1, r; l <= N; l = r + 1) {
        r = N / (N / l);
        ans = (ans + sqr (oseqm (N / l)) * ((phi_sieve (r) - phi_sieve (l - 1) + MOD) % MOD) % MOD) % MOD;
    }
    return ans;
}

int main () {
    scanf ("%lld%lld", & MOD, & N);
    inv2 = power (2ll, MOD - 2), inv6 = power (6ll, MOD - 2);
    MAX = (int) min (1ll * MAX, N), linear_sieve ();
    LL ans = Solve ();
    cout << ans << endl;

    return 0;
}

/*
998244353 2000
*/

/*
1000000007 9786510294
*/

洛谷 3768 - 简单的数学题

原文:https://www.cnblogs.com/Colythme/p/10279306.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!