首页 > 其他 > 详细

mahout推荐1

时间:2014-08-04 10:26:57      阅读:358      评论:0      收藏:0      [点我收藏+]

1、准备数据:

intro.csv:

1,101,5.0
1,102,3.0
1,103,2.5

2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0

3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0

4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0

5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

 

2、编程实现:

  目的:为用户1推荐一件商品看看:

package mahout;

import java.io.File;
import java.util.List;

import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
/**
 * 基于用户的推荐程序
 * @author Administrator
 *
 */
public class RecommenderIntro {

	public static void main(String[] args) throws Exception {
		//装载数据文件,实现存储,并为计算提供所需的所有偏好,用户和物品数据
		DataModel model = new FileDataModel(new File("data/intro.csv"));
		//用户相似度,给出两个用户的相似度,有多种度量方式
		UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
		//用户邻居,与给定用户最相似的一组用户
		UserNeighborhood neighborhood = new NearestNUserNeighborhood(2,
				similarity, model);
		//推荐引擎,合并这些组件,实现推荐
		Recommender recommender = new GenericUserBasedRecommender(model,
				neighborhood, similarity);
		//为用户1推荐一件物品1,1
		List<RecommendedItem> recommendedItems = recommender.recommend(1, 1);
		//输出
		for (RecommendedItem item : recommendedItems) {
			System.out.println(item);
		}
	}
}

 输出结果:

14/08/04 08:46:31 INFO file.FileDataModel: Creating FileDataModel for file data\intro.csv
14/08/04 08:46:31 INFO file.FileDataModel: Reading file info...
14/08/04 08:46:31 INFO file.FileDataModel: Read lines: 21
14/08/04 08:46:31 INFO model.GenericDataModel: Processed 5 users
RecommendedItem[item:104, value:4.257081]

 当然也可以推荐多件商品,那就是将recommender.recommend(1,N)即可。

推荐效果不错。

mahout推荐1,布布扣,bubuko.com

mahout推荐1

原文:http://www.cnblogs.com/jsunday/p/3889325.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!