1.问题:在Python3进行CNN测试时,出现了
(from warn module)UserWarning: Anti-aliasing will be enabled by default in skimage 0.15 to avoid aliasing artifacts when down-sampling images. warn("Anti-aliasing will be enabled by default in skimage 0.15 to "
问题原因:因为其默认安装的skimage0.15的版本跟我的Python版本在进行图片采样时发生冲突
解决方法:卸载skimage 0.15,安装skimage 0.13.0。
pip3 uninstall scikit-image
pip3 install scikit-image==0.13.0
2.问题:启动程序时出现以下错误
from numpy.lib.arraypad import _validate_lengths ImportError: cannot import name ‘_validate_lengths‘ from ‘numpy.lib.arraypad‘
问题原因:这是在解决skimage0.15版本后出现的问题。找不到_validate_lengths函数,在arraypad.py文件中确实找不到对应的函数,所以找到以前配置过的环境中对应的文件,拷贝这个缺失的函数。
解决方法:打开终端,进入Python环境,输入以下代码,查看Python3.7安装位置。
import sys print(sys.path)
找到arraypad.py的位置 user/lib/python3.7/site-packages/numpy/lib/arraypad.py,打开文件后,在954后添加以下代码,保存退出,问题解决。
def _normalize_shape(ndarray, shape, cast_to_int=True): """ Private function which does some checks and normalizes the possibly much simpler representations of ‘pad_width‘, ‘stat_length‘, ‘constant_values‘, ‘end_values‘. Parameters ---------- narray : ndarray Input ndarray shape : {sequence, array_like, float, int}, optional The width of padding (pad_width), the number of elements on the edge of the narray used for statistics (stat_length), the constant value(s) to use when filling padded regions (constant_values), or the endpoint target(s) for linear ramps (end_values). ((before_1, after_1), ... (before_N, after_N)) unique number of elements for each axis where `N` is rank of `narray`. ((before, after),) yields same before and after constants for each axis. (constant,) or val is a shortcut for before = after = constant for all axes. cast_to_int : bool, optional Controls if values in ``shape`` will be rounded and cast to int before being returned. Returns ------- normalized_shape : tuple of tuples val => ((val, val), (val, val), ...) [[val1, val2], [val3, val4], ...] => ((val1, val2), (val3, val4), ...) ((val1, val2), (val3, val4), ...) => no change [[val1, val2], ] => ((val1, val2), (val1, val2), ...) ((val1, val2), ) => ((val1, val2), (val1, val2), ...) [[val , ], ] => ((val, val), (val, val), ...) ((val , ), ) => ((val, val), (val, val), ...) """ ndims = ndarray.ndim # Shortcut shape=None if shape is None: return ((None, None), ) * ndims # Convert any input `info` to a NumPy array shape_arr = np.asarray(shape) try: shape_arr = np.broadcast_to(shape_arr, (ndims, 2)) except ValueError: fmt = "Unable to create correctly shaped tuple from %s" raise ValueError(fmt % (shape,)) # Cast if necessary if cast_to_int is True: shape_arr = np.round(shape_arr).astype(int) # Convert list of lists to tuple of tuples return tuple(tuple(axis) for axis in shape_arr.tolist()) def _validate_lengths(narray, number_elements): """ Private function which does some checks and reformats pad_width and stat_length using _normalize_shape. Parameters ---------- narray : ndarray Input ndarray number_elements : {sequence, int}, optional The width of padding (pad_width) or the number of elements on the edge of the narray used for statistics (stat_length). ((before_1, after_1), ... (before_N, after_N)) unique number of elements for each axis. ((before, after),) yields same before and after constants for each axis. (constant,) or int is a shortcut for before = after = constant for all axes. Returns ------- _validate_lengths : tuple of tuples int => ((int, int), (int, int), ...) [[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...) ((int1, int2), (int3, int4), ...) => no change [[int1, int2], ] => ((int1, int2), (int1, int2), ...) ((int1, int2), ) => ((int1, int2), (int1, int2), ...) [[int , ], ] => ((int, int), (int, int), ...) ((int , ), ) => ((int, int), (int, int), ...) """ normshp = _normalize_shape(narray, number_elements) for i in normshp: chk = [1 if x is None else x for x in i] chk = [1 if x >= 0 else -1 for x in chk] if (chk[0] < 0) or (chk[1] < 0): fmt = "%s cannot contain negative values." raise ValueError(fmt % (number_elements,)) return normshp
Python开发过程问题集锦(Continuous updating)
原文:https://www.cnblogs.com/lixiansheng/p/10293323.html