考虑带权并查集,设\(f[i]\)表示\(i\)的父亲(\(\forall f[i]<i\)),\(sum[i]\)表示\(\sum\limits_{j=fa[i]}^ia[j]\),对于一组输入的\([x,y,z]\),有:
1.如果\(f[x-1]=f[y]\)
这个时候直接判断\(sum[y]-sum[x-1]\)是否等于\(z\)就行了。
2.如果\(f[x-1]\not= f[y]\)
将\(f[y]\)的\(f\)定为\(f[x-1]\),则\(sum[f[y]]=sum[x-1]+z-sum[y]\)
如果要用差分约束系统来写,就是打板子判负/正环了,但是带权并查集更好写
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 1e2 + 10;
int t, n, m, fa[N]; ll s[N];
int find (int x) {
if(fa[x] == -1) return x;
int tmp = find(fa[x]);
s[x] += s[fa[x]];
return fa[x] = tmp;
}
int main () {
read(t);
while(t--) {
bool fail = false;
read(n), read(m);
memset(fa, -1, sizeof fa);
memset(s, 0, sizeof s);
int x, y; ll z;
for(int i = 1; i <= m; ++i) {
read(x), read(y), read(z), --x;
int fx = find(x), fy = find(y);
if(fx == fy) {
if(s[y] - s[x] != z) {
fail = true; break;
}
} else fa[fy] = fx, s[fy] = s[x] + z - s[y];
}
puts(fail ? "false" : "true");
}
return 0;
}
Bzoj1202/洛谷P2294 [HNOI2005]狡猾的商人(带权并查集/差分约束系统)
原文:https://www.cnblogs.com/water-mi/p/10308251.html