题意:
给出一个序列,输出每个数x对应的一个ans,要求ans在数列中,并且ans & x = 0;数列的每个数小于(4e6)
思路:
这道题的方向比较难想。想到了就比较轻松了,可以这样考虑,如果(11011)2的答案知道了,那么(11001)2,(11000)2等的答案其实就是那个答案。
注意 (1<<22)-1 ,所以直接从最大的向下枚举,对于每个数,看看把0位变成1位后是否能有答案。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl ‘\n‘ #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9+7; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<‘0‘||ch>‘9‘) f|=(ch==‘-‘),ch=getchar(); while (ch>=‘0‘&&ch<=‘9‘) x=x*10+ch-‘0‘,ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = (1<<22) - 1; int a[maxn],dp[maxn]; int main(){ int n; scanf("%d", &n); memset(dp, -1, sizeof(dp)); for(int i=1; i<=n; i++) scanf("%d", &a[i]), dp[maxn & (~a[i])] = a[i]; for(int i=maxn; i>=1; i--){ if(dp[i] > 0) continue; for(int j=0; j<22; j++){ if((i & (1<< j)) == 0 && dp[i^(1<<j)] > 0){ dp[i] = dp[i^(1<<j)]; break; } } } for(int i=1; i<=n; i++) printf("%d ", dp[a[i]]); puts(""); return 0; }
CFdiv2 165E. Compatible Numbers 子集枚举
原文:https://www.cnblogs.com/ckxkexing/p/10311330.html