Lecture Note 2
Tensorboard P3
Data Structures P4
Math Operations P6
Data Types P7
tf native && python native
tensorflow && numpy P9
Variables P10-14
var要先initiate/assign
placeholder P15-16
Lecture Note 3
An example of logitic regression P3
- How to define a los function? P4-6
- tf.data 导入数据用 P6-9
- Optimizer P9-13
- eg: logistic on MNIST P14
Lecture Note 4
Eager:方便在Python中使用TensorFlow
eg: ppt P19-P23 不用再tf.session.run
自动求导 P25-28
与传统tf命令的区别 P32
usage P37
Assignment 1
1. Commonly used tensorflow operations
1 """ 2 Simple exercises to get used to TensorFlow API 3 You should thoroughly test your code. 4 TensorFlow‘s official documentation should be your best friend here 5 CS20: "TensorFlow for Deep Learning Research" 6 cs20.stanford.edu 7 Created by Chip Huyen (chiphuyen@cs.stanford.edu) 8 """ 9 import os 10 os.environ[‘TF_CPP_MIN_LOG_LEVEL‘]=‘2‘ 11 12 import tensorflow as tf 13 14 sess = tf.InteractiveSession() 15 ############################################################################### 16 # 1a: Create two random 0-d tensors x and y of any distribution. 17 # Create a TensorFlow object that returns x + y if x > y, and x - y otherwise. 18 # Hint: look up tf.cond() 19 # I do the first problem for you 20 ############################################################################### 21 22 x = tf.random_uniform([]) # Empty array as shape creates a scalar. 23 y = tf.random_uniform([]) 24 out = tf.cond(tf.greater(x, y), lambda: x + y, lambda: x - y) 25 print(sess.run(out)) 26 27 ############################################################################### 28 # 1b: Create two 0-d tensors x and y randomly selected from the range [-1, 1). 29 # Return x + y if x < y, x - y if x > y, 0 otherwise. 30 # Hint: Look up tf.case(). 31 ############################################################################### 32 33 # YOUR CODE 34 x = tf.random_uniform([]) 35 y = tf.random_uniform([]) 36 xdy = lambda x,y: x-y 37 xpy = lambda x,y: x+y 38 res = tf.case({tf.less(x,y): lambda: xpy(x,y), tf.greater(x,y): lambda: xdy(x,y)}, default=lambda: 0.00, exclusive=True) 39 print(sess.run(res)) 40 41 ############################################################################### 42 # 1c: Create the tensor x of the value [[0, -2, -1], [0, 1, 2]] 43 # and y as a tensor of zeros with the same shape as x. 44 # Return a boolean tensor that yields Trues if x equals y element-wise. 45 # Hint: Look up tf.equal(). 46 ############################################################################### 47 48 # YOUR CODE 49 x = tf.constant([[0, -2, -1], [0, 1, 2]]) 50 y = tf.zeros_like(x) 51 res = tf.equal(x,y) 52 print(sess.run(res)) 53 54 ############################################################################### 55 # 1d: Create the tensor x of value 56 # [29.05088806, 27.61298943, 31.19073486, 29.35532951, 57 # 30.97266006, 26.67541885, 38.08450317, 20.74983215, 58 # 34.94445419, 34.45999146, 29.06485367, 36.01657104, 59 # 27.88236427, 20.56035233, 30.20379066, 29.51215172, 60 # 33.71149445, 28.59134293, 36.05556488, 28.66994858]. 61 # Get the indices of elements in x whose values are greater than 30. 62 # Hint: Use tf.where(). 63 # Then extract elements whose values are greater than 30. 64 # Hint: Use tf.gather(). 65 ############################################################################### 66 67 # YOUR CODE 68 x=tf.constant([[29.05088806, 27.61298943, 31.19073486, 29.35532951], [30.97266006, 26.67541885, 38.08450317, 20.74983215], [34.94445419, 34.45999146, 29.06485367, 36.01657104], [27.88236427, 20.56035233, 30.20379066, 29.51215172], [33.71149445, 28.59134293, 36.05556488, 28.66994858]]) 69 h1=tf.where(tf.greater(x, 30)) 70 print(sess.run(h1)) 71 h2=tf.gather_nd(x,h1) 72 print(sess.run(h2)) 73 74 ############################################################################### 75 # 1e: Create a diagnoal 2-d tensor of size 6 x 6 with the diagonal values of 1, 76 # 2, ..., 6 77 # Hint: Use tf.range() and tf.diag(). 78 ############################################################################### 79 80 # YOUR CODE 81 ran=tf.range(1,7,1) 82 dig=tf.diag(ran) 83 print(sess.run(dig)) 84 85 ############################################################################### 86 # 1f: Create a random 2-d tensor of size 10 x 10 from any distribution. 87 # Calculate its determinant. 88 # Hint: Look at tf.matrix_determinant(). 89 ############################################################################### 90 91 # YOUR CODE 92 x = tf.random_uniform((10,10)) 93 res=tf.matrix_determinant(x) 94 print(sess.run(res)) 95 96 ############################################################################### 97 # 1g: Create tensor x with value [5, 2, 3, 5, 10, 6, 2, 3, 4, 2, 1, 1, 0, 9]. 98 # Return the unique elements in x 99 # Hint: use tf.unique(). Keep in mind that tf.unique() returns a tuple. 100 ############################################################################### 101 102 # YOUR CODE 103 x=tf.constant([5, 2, 3, 5, 10, 6, 2, 3, 4, 2, 1, 1, 0, 9]) 104 y, idx=tf.unique(x) 105 print(sess.run(y)) 106 107 ############################################################################### 108 # 1h: Create two tensors x and y of shape 300 from any normal distribution, 109 # as long as they are from the same distribution. 110 # Use tf.cond() to return: 111 # - The mean squared error of (x - y) if the average of all elements in (x - y) is negative, or 112 # - The sum of absolute value of all elements in the tensor (x - y) otherwise. 113 # Hint: see the Huber loss function in the lecture slides 3. 114 ############################################################################### 115 116 # YOUR CODE 117 x = tf.random_normal([300]) 118 y = tf.random_normal([300]) 119 res=tf.cond(tf.reduce_mean(x-y)<0, lambda: tf.reduce_mean(tf.square(x-y)), lambda: tf.reduce_sum(tf.abs(x-y))) 120 print(sess.run(res))
2. Logistic regression in tensorflow
1 """ Starter code for simple logistic regression model for MNIST 2 with tf.data module 3 MNIST dataset: yann.lecun.com/exdb/mnist/ 4 Created by Chip Huyen (chiphuyen@cs.stanford.edu) 5 CS20: "TensorFlow for Deep Learning Research" 6 cs20.stanford.edu 7 Lecture 03 8 """ 9 import os 10 os.environ[‘TF_CPP_MIN_LOG_LEVEL‘]=‘2‘ 11 12 import numpy as np 13 import tensorflow as tf 14 import time 15 16 import utils 17 18 # Define paramaters for the model 19 learning_rate = 0.01 20 batch_size = 128 21 n_epochs = 50 22 n_train = 60000 23 n_test = 10000 24 25 # Step 1: Read in data 26 mnist_folder = ‘data/mnist‘ 27 utils.download_mnist(mnist_folder) 28 train, val, test = utils.read_mnist(mnist_folder, flatten=True) 29 30 # Step 2: Create datasets and iterator 31 # create training Dataset and batch it 32 train_data = tf.data.Dataset.from_tensor_slices(train) 33 train_data = train_data.shuffle(30000) # if you want to shuffle your data 34 train_data = train_data.batch(batch_size) 35 36 # create testing Dataset and batch it 37 test_data = None 38 ############################# 39 ########## TO DO ############ 40 test_data = tf.data.Dataset.from_tensor_slices(test) 41 test_data = test_data.batch(batch_size) 42 ############################# 43 44 45 # create one iterator and initialize it with different datasets 46 iterator = tf.data.Iterator.from_structure(train_data.output_types, 47 train_data.output_shapes) 48 img, label = iterator.get_next() 49 50 train_init = iterator.make_initializer(train_data) # initializer for train_data 51 test_init = iterator.make_initializer(test_data) # initializer for train_data 52 53 # Step 3: create weights and bias 54 # w is initialized to random variables with mean of 0, stddev of 0.01 55 # b is initialized to 0 56 # shape of w depends on the dimension of X and Y so that Y = tf.matmul(X, w) 57 # shape of b depends on Y 58 w, b = None, None 59 ############################# 60 ########## TO DO ############ 61 w=tf.get_variable("W", shape=(784,10), initializer=tf.random_normal_initializer(mean=0, stddev=1)) 62 b=tf.get_variable("b", shape=(1,10), initializer=tf.zeros_initializer()) 63 ############################# 64 65 66 # Step 4: build model 67 # the model that returns the logits. 68 # this logits will be later passed through softmax layer 69 logits = None 70 ############################# 71 ########## TO DO ############ 72 logits=tf.matmul(img,w)+b 73 ############################# 74 75 76 # Step 5: define loss function 77 # use cross entropy of softmax of logits as the loss function 78 loss = None 79 ############################# 80 ########## TO DO ############ 81 entropy=tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=label) 82 loss=tf.reduce_mean(entropy) 83 ############################# 84 85 86 # Step 6: define optimizer 87 # using Adamn Optimizer with pre-defined learning rate to minimize loss 88 optimizer = None 89 ############################# 90 # REF: https://blog.csdn.net/mao_xiao_feng/article/details/53382790 91 ########## TO DO ############ 92 optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss) 93 ############################# 94 95 96 # Step 7: calculate accuracy with test set 97 preds = tf.nn.softmax(logits) 98 correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(label, 1)) 99 accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32)) 100 101 writer = tf.summary.FileWriter(‘./graphs/logreg‘, tf.get_default_graph()) 102 with tf.Session() as sess: 103 104 start_time = time.time() 105 sess.run(tf.global_variables_initializer()) 106 107 # train the model n_epochs times 108 for i in range(n_epochs): 109 sess.run(train_init) # drawing samples from train_data 110 total_loss = 0 111 n_batches = 0 112 try: 113 while True: 114 _, l = sess.run([optimizer, loss]) 115 total_loss += l 116 n_batches += 1 117 except tf.errors.OutOfRangeError: 118 pass 119 print(‘Average loss epoch {0}: {1}‘.format(i, total_loss/n_batches)) 120 print(‘Total time: {0} seconds‘.format(time.time() - start_time)) 121 122 # test the model 123 sess.run(test_init) # drawing samples from test_data 124 total_correct_preds = 0 125 try: 126 while True: 127 accuracy_batch = sess.run(accuracy) 128 total_correct_preds += accuracy_batch 129 except tf.errors.OutOfRangeError: 130 pass 131 132 print(‘Accuracy {0}‘.format(total_correct_preds/n_test)) 133 writer.close()
Lecture Note5
word embedding: Representing a word by means of its neighbors
softmax:预测概率 Note P3
Model介绍
Note P4-7, P9-14
Tensorflow programming的一般模式 Note P7-8
1. Import data (use tf.data or placehholder)
2. Define weights
3. Define model
4. Define loss function
5. Define optimizer
6. Train the model
6.1 Initialize all model variables
6.2 Initialize iterator/feed in the training data
6.3 Execute the model on training data
6.4 Compute cost
6.5 Adjust parameter to minimize the cost
Name Scope:用于在tensorboard中给ops归类 Note P15
VarScope:为了在不同计算图(eg: 不同NN中)复用变量值 Note P17-19
collection Note P20
tf.saver Note P21-24
tf.summary 用于在tensorboard中看变量(eg: loss)的变化情况 Note P25-27
randomization Note P27-29
autodiff Note P29
Lecture Note 6
CNN
imput image: width * height * depth (图像的长/宽/color [eg: RGB] ) eg: Note P2
3 main types of layers: Conv Layer / Pooling Layer / Fully-Connected Layer
1. Conv Layer Note P6 图
depth:卷积核(filter)的数量
stride:卷积核在input上每次移动的步长
zero-padding:在input的边框上补几圈0,以保证卷积前后input/output大小一致
summary:Note P9
2. Pooling Layer Note P13
用于降维,常用于conv layer之后。且可以降低overfitting
3. Normalization Layer Note P14
4. FC(Fully-Connected) Layer Note P14
5. Convert FC to Conv Layer Note P14
不会qwq
6. Conv Network Architecture Note P16
Lecture Note 7
1. tf.nn.conv2d Note P3
2. Def a layer in a function, 便于复用
Conv layer P4
Max pooling P6
Fully connected P7
3. A more simple way: tf.layers Note P9
Assignment 2
1. CNN for mnist
1 """ Using convolutional net on MNIST dataset of handwritten digits 2 MNIST dataset: http://yann.lecun.com/exdb/mnist/ 3 CS 20: "TensorFlow for Deep Learning Research" 4 cs20.stanford.edu 5 Chip Huyen (chiphuyen@cs.stanford.edu) 6 Lecture 07 7 """ 8 import os 9 os.environ[‘TF_CPP_MIN_LOG_LEVEL‘]=‘2‘ 10 import time 11 12 import tensorflow as tf 13 14 import utils 15 16 def conv_relu(inputs, filters, k_size, stride, padding, scope_name): 17 ‘‘‘ 18 A method that does convolution + relu on inputs 19 ‘‘‘ 20 with tf.variable_scope(scope_name, reuse=tf.AUTO_REUSE) as scope: 21 in_channels = inputs.shape[-1] 22 kernel = tf.get_variable(‘kernel‘, 23 [k_size, k_size, in_channels, filters], 24 initializer = tf.truncated_normal_initializer()) 25 biases = tf.get_variable(‘biases‘, [filters], 26 initializer = tf.random_normal_initializer()) 27 conv = tf.nn.conv2d(inputs, kernel, strides=[1, stride, stride, 1], padding=padding) 28 return tf.nn.relu(conv+biases, name=scope.name) 29 30 def maxpool(inputs, ksize, stride, padding=‘VALID‘, scope_name=‘pool‘): 31 ‘‘‘A method that does max pooling on inputs‘‘‘ 32 with tf.variable_scope(scope_name, reuse=tf.AUTO_REUSE) as scope: 33 pool = tf.nn.max_pool(inputs, 34 ksize=[1, ksize, ksize, 1], 35 strides=[1, stride, stride, 1], 36 padding=padding) 37 return pool 38 39 def fully_connected(inputs, out_dim, scope_name=‘fc‘): 40 ‘‘‘ 41 A fully connected linear layer on inputs 42 ‘‘‘ 43 with tf.variable_scope(scope_name, reuse=tf.AUTO_REUSE) as scope: 44 in_dim = inputs.shape[-1] 45 W = tf.get_variable(‘weights‘, 46 [in_dim, out_dim], 47 initializer=tf.truncated_normal_initializer()) 48 b = tf.get_variable(‘biases‘, 49 [out_dim], 50 initializer=tf.constant_initializer(0.0)) 51 out = tf.matmul(inputs, W) + b 52 return out 53 54 class ConvNet(object): 55 def __init__(self): 56 self.lr = 0.001 57 self.batch_size = 128 58 self.keep_prob = tf.constant(0.75) 59 self.gstep = tf.Variable(0, dtype=tf.int32, 60 trainable=False, name=‘global_step‘) 61 self.n_classes = 10 62 self.skip_step = 20 63 self.n_test = 10000 64 self.training=False 65 66 def get_data(self): 67 with tf.name_scope(‘data‘): 68 train_data, test_data = utils.get_mnist_dataset(self.batch_size) 69 iterator = tf.data.Iterator.from_structure(train_data.output_types, 70 train_data.output_shapes) 71 img, self.label = iterator.get_next() 72 self.img = tf.reshape(img, shape=[-1, 28, 28, 1]) 73 # reshape the image to make it work with tf.nn.conv2d 74 75 self.train_init = iterator.make_initializer(train_data) # initializer for train_data 76 self.test_init = iterator.make_initializer(test_data) # initializer for train_data 77 78 def inference_by_functions(self): 79 ‘‘‘ 80 Build the model according to the description we‘ve shown in class 81 Define the model by using the functions above 82 ‘‘‘ 83 conv1 = conv_relu(inputs=self.img, 84 filters=32, 85 k_size=5, 86 stride=1, 87 padding=‘SAME‘, 88 scope_name=‘conv1‘) 89 pool1 = maxpool(conv1, 2, 2, ‘VALID‘, ‘pool1‘) 90 conv2 = conv_relu(inputs=pool1, 91 filters=64, 92 k_size=5, 93 stride=1, 94 padding=‘SAME‘, 95 scope_name=‘conv2‘) 96 pool2 = maxpool(conv2, 2, 2, ‘VALID‘, ‘pool2‘) 97 feature_dim = pool2.shape[1] * pool2.shape[2] * pool2.shape[3] 98 pool2 = tf.reshape(pool2, [-1, feature_dim]) 99 fc = tf.nn.relu(fully_connected(pool2, 1024, ‘fc‘)) 100 dropout = tf.layers.dropout(fc, self.keep_prob, name=‘dropout‘) 101 self.logits = fully_connected(dropout, self.n_classes, ‘logits‘) 102 103 def inference_by_layers(self): 104 ‘‘‘ 105 Build the model according to the description we‘ve shown in class 106 Define the model by using tf.layers 107 ‘‘‘ 108 conv1 = tf.layers.conv2d(inputs=self.img, 109 filters=32, 110 kernel_size=[5, 5], 111 padding=‘SAME‘, 112 activation=tf.nn.relu, 113 name=‘conv1‘) 114 pool1 = tf.layers.max_pooling2d(inputs=conv1, 115 pool_size=[2, 2], 116 strides=2, 117 name=‘pool1‘) 118 119 conv2 = tf.layers.conv2d(inputs=pool1, 120 filters=64, 121 kernel_size=[5, 5], 122 padding=‘SAME‘, 123 activation=tf.nn.relu, 124 name=‘conv2‘) 125 pool2 = tf.layers.max_pooling2d(inputs=conv2, 126 pool_size=[2, 2], 127 strides=2, 128 name=‘pool2‘) 129 130 feature_dim = pool2.shape[1] * pool2.shape[2] * pool2.shape[3] 131 pool2 = tf.reshape(pool2, [-1, feature_dim]) 132 fc = tf.layers.dense(pool2, 1024, activation=tf.nn.relu, name=‘fc‘) 133 dropout = tf.layers.dropout(fc, 134 self.keep_prob, 135 training=self.training, 136 name=‘dropout‘) 137 self.logits = tf.layers.dense(dropout, self.n_classes, name=‘logits‘) 138 139 140 def loss(self): 141 ‘‘‘ 142 define loss function 143 use softmax cross entropy with logits as the loss function 144 tf.nn.softmax_cross_entropy_with_logits 145 softmax is applied internally 146 don‘t forget to compute mean cross all sample in a batch 147 ‘‘‘ 148 with tf.name_scope(‘loss‘): 149 cross_entropy = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.label)) 150 self.loss = cross_entropy 151 152 def optimize(self): 153 ‘‘‘ 154 Define training op 155 using Adam Gradient Descent to minimize cost 156 Don‘t forget to use global step 157 ‘‘‘ 158 optimizer = tf.train.AdamOptimizer(self.lr).minimize(self.loss, global_step=self.gstep) 159 self.opt = optimizer 160 161 def summary(self): 162 ‘‘‘ 163 Create summaries to write on TensorBoard 164 Remember to track both training loss and test accuracy 165 ‘‘‘ 166 with tf.name_scope(‘summaries‘): 167 tf.summary.scalar(‘loss‘, self.loss) 168 tf.summary.scalar(‘accuracy‘, self.accuracy) 169 tf.summary.histogram(‘histogram loss‘, self.loss) 170 self.summary_op = tf.summary.merge_all() 171 172 def eval(self): 173 ‘‘‘ 174 Count the number of right predictions in a batch 175 ‘‘‘ 176 with tf.name_scope(‘predict‘): 177 preds = tf.nn.softmax(self.logits) 178 correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(self.label, 1)) 179 self.accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32)) 180 181 def build(self): 182 ‘‘‘ 183 Build the computation graph 184 ‘‘‘ 185 self.get_data() 186 self.inference_by_layers() 187 self.loss() 188 self.optimize() 189 self.eval() 190 self.summary() 191 192 def train_one_epoch(self, sess, saver, init, writer, epoch, step): 193 start_time = time.time() 194 sess.run(init) 195 total_loss = 0 196 n_batches = 0 197 try: 198 while True: 199 _, l, summaries = sess.run([self.opt, self.loss, self.summary_op]) 200 writer.add_summary(summaries, global_step=step) 201 if (step + 1) % self.skip_step == 0: 202 print(‘Loss at step {0}: {1}‘.format(step, l)) 203 step += 1 204 total_loss += l 205 n_batches += 1 206 except tf.errors.OutOfRangeError: 207 pass 208 saver.save(sess, ‘checkpoints/convnet_starter/mnist-convnet‘, step) 209 print(‘Average loss at epoch {0}: {1}‘.format(epoch, total_loss/n_batches)) 210 print(‘Took: {0} seconds‘.format(time.time() - start_time)) 211 return step 212 213 def eval_once(self, sess, init, writer, epoch, step): 214 start_time = time.time() 215 sess.run(init) 216 total_correct_preds = 0 217 try: 218 while True: 219 accuracy_batch, summaries = sess.run([self.accuracy, self.summary_op]) 220 writer.add_summary(summaries, global_step=step) 221 total_correct_preds += accuracy_batch 222 except tf.errors.OutOfRangeError: 223 pass 224 225 print(‘Accuracy at epoch {0}: {1} ‘.format(epoch, total_correct_preds/self.n_test)) 226 print(‘Took: {0} seconds‘.format(time.time() - start_time)) 227 228 def train(self, n_epochs): 229 ‘‘‘ 230 The train function alternates between training one epoch and evaluating 231 ‘‘‘ 232 utils.safe_mkdir(‘checkpoints‘) 233 utils.safe_mkdir(‘checkpoints/convnet_starter‘) 234 writer = tf.summary.FileWriter(‘./graphs/convnet_starter‘, tf.get_default_graph()) 235 236 with tf.Session() as sess: 237 sess.run(tf.global_variables_initializer()) 238 saver = tf.train.Saver() 239 ckpt = tf.train.get_checkpoint_state(os.path.dirname(‘checkpoints/convnet_starter/checkpoint‘)) 240 if ckpt and ckpt.model_checkpoint_path: 241 saver.restore(sess, ckpt.model_checkpoint_path) 242 243 step = self.gstep.eval() 244 245 for epoch in range(n_epochs): 246 step = self.train_one_epoch(sess, saver, self.train_init, writer, epoch, step) 247 self.eval_once(sess, self.test_init, writer, epoch, step) 248 writer.close() 249 250 if __name__ == ‘__main__‘: 251 model = ConvNet() 252 model.build() 253 model.train(n_epochs=15)
2. style transfer
1 """ Implementation in TensorFlow of the paper 2 A Neural Algorithm of Artistic Style (Gatys et al., 2016) 3 4 Created by Chip Huyen (chiphuyen@cs.stanford.edu) 5 CS20: "TensorFlow for Deep Learning Research" 6 cs20.stanford.edu 7 8 For more details, please read the assignment handout: 9 https://docs.google.com/document/d/1FpueD-3mScnD0SJQDtwmOb1FrSwo1NGowkXzMwPoLH4/edit?usp=sharing 10 """ 11 import os 12 os.environ[‘TF_CPP_MIN_LOG_LEVEL‘]=‘2‘ 13 import time 14 15 import numpy as np 16 import tensorflow as tf 17 18 import load_vgg 19 import utils 20 21 def setup(): 22 utils.safe_mkdir(‘checkpoints‘) 23 utils.safe_mkdir(‘checkpoints/style_transfer‘) 24 utils.safe_mkdir(‘outputs‘) 25 utils.safe_mkdir(‘graphs‘) 26 27 class StyleTransfer(object): 28 def __init__(self, content_img, style_img, img_width, img_height): 29 ‘‘‘ 30 img_width and img_height are the dimensions we expect from the generated image. 31 We will resize input content image and input style image to match this dimension. 32 Feel free to alter any hyperparameter here and see how it affects your training. 33 ‘‘‘ 34 self.img_width = img_width 35 self.img_height = img_height 36 self.content_img = utils.get_resized_image(content_img, img_width, img_height) 37 self.style_img = utils.get_resized_image(style_img, img_width, img_height) 38 self.initial_img = utils.generate_noise_image(self.content_img, img_width, img_height) 39 40 ## create global step (gstep) and hyperparameters for the model 41 self.content_layer = ‘conv4_2‘ 42 self.style_layers = [‘conv1_1‘, ‘conv2_1‘, ‘conv3_1‘, ‘conv4_1‘, ‘conv5_1‘] 43 # content_w, style_w: corresponding weights for content loss and style loss 44 self.content_w = 0.01 45 self.style_w = 1 46 # style_layer_w: weights for different style layers. deep layers have more weights 47 self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0] 48 self.gstep = tf.Variable(0, dtype=tf.int32, trainable=False, name=‘global_step‘) 49 self.lr = 2.0 50 51 def create_input(self): 52 ‘‘‘ 53 We will use one input_img as a placeholder for the content image, 54 style image, and generated image, because: 55 1. they have the same dimension 56 2. we have to extract the same set of features from them 57 We use a variable instead of a placeholder because we‘re, at the same time, 58 training the generated image to get the desirable result. 59 60 Note: image height corresponds to number of rows, not columns. 61 ‘‘‘ 62 with tf.variable_scope(‘input‘) as scope: 63 self.input_img = tf.get_variable(‘in_img‘, 64 shape=([1, self.img_height, self.img_width, 3]), 65 dtype=tf.float32, 66 initializer=tf.zeros_initializer()) 67 def load_vgg(self): 68 ‘‘‘ 69 Load the saved model parameters of VGG-19, using the input_img 70 as the input to compute the output at each layer of vgg. 71 72 During training, VGG-19 mean-centered all images and found the mean pixels 73 to be [123.68, 116.779, 103.939] along RGB dimensions. We have to subtract 74 this mean from our images. 75 76 ‘‘‘ 77 self.vgg = load_vgg.VGG(self.input_img) 78 self.vgg.load() 79 self.content_img -= self.vgg.mean_pixels 80 self.style_img -= self.vgg.mean_pixels 81 82 def _content_loss(self, P, F): 83 ‘‘‘ Calculate the loss between the feature representation of the 84 content image and the generated image. 85 86 Inputs: 87 P: content representation of the content image 88 F: content representation of the generated image 89 Read the assignment handout for more details 90 91 Note: Don‘t use the coefficient 0.5 as defined in the paper. 92 Use the coefficient defined in the assignment handout. 93 ‘‘‘ 94 self.content_loss = tf.reduce_sum((F - P) ** 2) / (4.0 * P.size) 95 96 def _gram_matrix(self, F, N, M): 97 """ Create and return the gram matrix for tensor F 98 Hint: you‘ll first have to reshape F 99 """ 100 F = tf.reshape(F, (M, N)) 101 return tf.matmul(tf.transpose(F), F) 102 103 def _single_style_loss(self, a, g): 104 """ Calculate the style loss at a certain layer 105 Inputs: 106 a is the feature representation of the style image at that layer 107 g is the feature representation of the generated image at that layer 108 Output: 109 the style loss at a certain layer (which is E_l in the paper) 110 111 Hint: 1. you‘ll have to use the function _gram_matrix() 112 2. we‘ll use the same coefficient for style loss as in the paper 113 3. a and g are feature representation, not gram matrices 114 """ 115 N = a.shape[3] # number of filters 116 M = a.shape[1] * a.shape[2] # height times width of the feature map 117 G = self._gram_matrix(g, N, M) 118 A = self._gram_matrix(a, N, M) 119 return tf.reduce_sum((G-A) ** 2 / (4*N*N*M*M)) 120 121 def _style_loss(self, A): 122 """ Calculate the total style loss as a weighted sum 123 of style losses at all style layers 124 Hint: you‘ll have to use _single_style_loss() 125 """ 126 n_layers = len(self.style_layers) 127 E = [self._single_style_loss(A[i], getattr(self.vgg, self.style_layers[i])) for i in range(n_layers)] 128 self.style_loss = sum([self.style_layer_w[i] * E[i] for i in range(n_layers)]) 129 130 def losses(self): 131 with tf.variable_scope(‘losses‘) as scope: 132 with tf.Session() as sess: 133 # assign content image to the input variable 134 sess.run(self.input_img.assign(self.content_img)) 135 gen_img_content = getattr(self.vgg, self.content_layer) 136 content_img_content = sess.run(gen_img_content) 137 self._content_loss(content_img_content, gen_img_content) 138 139 with tf.Session() as sess: 140 sess.run(self.input_img.assign(self.style_img)) 141 style_layers = sess.run([getattr(self.vgg, layer) for layer in self.style_layers]) 142 self._style_loss(style_layers) 143 144 self.total_loss = self.content_w * self.content_loss + self.style_w * self.style_loss 145 146 def optimize(self): 147 optimizer = tf.train.AdamOptimizer(self.lr).minimize(self.total_loss, global_step=self.gstep) 148 self.opt = optimizer 149 150 def create_summary(self): 151 with tf.name_scope(‘summaries‘): 152 tf.summary.scalar(‘content loss‘, self.content_loss) 153 tf.summary.scalar(‘style loss‘, self.style_loss) 154 tf.summary.scalar(‘total loss‘, self.total_loss) 155 tf.summary.histogram(‘histogram content loss‘, self.content_loss) 156 tf.summary.histogram(‘histogram style loss‘, self.style_loss) 157 tf.summary.histogram(‘histogram total loss‘, self.total_loss) 158 self.summary_op = tf.summary.merge_all() 159 160 def build(self): 161 self.create_input() 162 self.load_vgg() 163 self.losses() 164 self.optimize() 165 self.create_summary() 166 167 def train(self, n_iters): 168 skip_step = 1 169 with tf.Session() as sess: 170 ## 1. initialize your variables 171 ## 2. create writer to write your graph 172 sess.run(tf.global_variables_initializer()) 173 writer = tf.summary.FileWriter(‘./graphs/style_transfer‘, tf.get_default_graph()) 174 sess.run(self.input_img.assign(self.initial_img)) 175 176 ## 3. create a saver object 177 ## 4. check if a checkpoint exists, restore the variables 178 saver = tf.train.Saver() 179 ckpt = tf.train.get_checkpoint_state(os.path.dirname(‘checkpoints/checkpoint‘)) 180 if ckpt and ckpt.model_checkpoint_path: 181 saver.restore(sess, ckpt.model_checkpoint_path) 182 183 initial_step = self.gstep.eval() 184 185 start_time = time.time() 186 for index in range(initial_step, n_iters): 187 if index >= 5 and index < 20: 188 skip_step = 10 189 elif index >= 20: 190 skip_step = 20 191 192 sess.run(self.opt) 193 if (index + 1) % skip_step == 0: 194 ## obtain generated image, loss, and summary 195 gen_image, total_loss, summary = sess.run([self.input_img, self.total_loss, self.summary_op]) 196 197 # add back the mean pixels we subtracted before 198 gen_image = gen_image + self.vgg.mean_pixels 199 writer.add_summary(summary, global_step=index) 200 print(‘Step {}\n Sum: {:5.1f}‘.format(index + 1, np.sum(gen_image))) 201 print(‘ Loss: {:5.1f}‘.format(total_loss)) 202 print(‘ Took: {} seconds‘.format(time.time() - start_time)) 203 start_time = time.time() 204 205 filename = ‘outputs/%d.png‘ % (index) 206 utils.save_image(filename, gen_image) 207 208 if (index + 1) % 20 == 0: 209 # save the variables into a checkpoint 210 saver.save(sess, ‘checkpoints/style_transfer‘, index) 211 212 if __name__ == ‘__main__‘: 213 setup() 214 machine = StyleTransfer(‘content/deadpool.jpg‘, ‘styles/harlequin.jpg‘, 333, 250) 215 machine.build() 216 machine.train(300)
原文:https://www.cnblogs.com/pdev/p/10193933.html