Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
很浅显的一道题 求一段序列中的 最大连续子序列的和 并输出 这段序列的起点和终点 因为是DP所有放了很久。。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int q[100001];
int main()
{
int m,n,i,j,s;
int sum,max,a,b;
int t;
int start,end;
scanf("%d",&t);
for(int k=1;k<=t;k++)
{
if(k!=1)
cout<<endl;
scanf("%d",&m);
for(i=0;i<m;i++)
scanf("%d",&q[i]);
sum=q[0];
max=q[0];
a=0,b=0;
start=0;end=0; //初始化
for(i=1;i<m;i++)
{
if(sum<0) //类似于贪心思想,,当总和小于0时,要的是连续序列 则前面一段不要
{
a=i;
b=i;
sum=q[i];
}
else
{
sum=sum+q[i];
b=i;
}
if(sum>max) //每次都要更新最大和值
{
max=sum;
start=a;
end=b;
}
}
cout<<"Case "<<k<<':'<<endl;
cout<<max<<' '<<start+1<<' '<<end+1<<endl;
}
return 0;
}
HDU 1003 Max Sum 最大连续子序列的和,布布扣,bubuko.com
HDU 1003 Max Sum 最大连续子序列的和
原文:http://blog.csdn.net/axuan_k/article/details/38370771