题目链接
嗯,毒瘤题。
首先有一个结论,就是最小矩形一定有条边和凸包重合。脑补一下就好了。
然后枚举凸包的边,用旋转卡壳维护上顶点、左端点、右端点就好了。
上顶点用叉积,叉积越大三角形面积越大,对应的高也就越大。两边的点用点积,点积越大投影越大。
然后就是精度问题。这种实数计算最好不要直接用比较运算符,要用差和\(eps\)的关系来比较,我就是一直卡在这里。还好有爆炸\(OJ\)离线题库提供的数据。。。
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAXN = 50010;
const double eps = 1e-8;
struct point{
double x, y;
inline double dis(){
return sqrt(x * x + y * y);
}
inline void print(){
if(fabs(x) < 1e-10) x = 0;
if(fabs(y) < 1e-10) y = 0;
printf("%.5lf %.5lf\n", x, y);
}
}p[MAXN];
inline double sig(double x){
return (x > eps) - (x < -eps);
}
int operator == (point a, point b){
return a.x == b.x && a.y == b.y;
}
point operator * (point a, double b){ // ba
return (point){ a.x * b, a.y * b };
}
double operator * (point a, point b){ // a x b
return a.x * b.y - b.x * a.y;
}
double operator / (point a, point b){ // a . b
return a.x * b.x + a.y * b.y;
}
point operator - (point a, point b){ // a - b
return (point){ a.x - b.x, a.y - b.y };
}
point operator + (point a, point b){ // a + b
return (point){ a.x + b.x, a.y + b.y };
}
int cmp(const point a, const point b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
inline int judge(point a, point b, point c){ //Kab > Kac
return (b.y - a.y) * (c.x - a.x) > (c.y - a.y) * (b.x - a.x);
}
inline double mult(point a, point b, point c){
return (a - c) * (b - c);
}
inline double calc(point a, point b, point c){
return (b - a) / (c - a);
}
int n, top, tp;
point st[MAXN], ts[MAXN], Ans[5];
double ans = 1e18, d, a, b, L, R;
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%lf%lf", &p[i].x, &p[i].y);
sort(p + 1, p + n + 1, cmp);
for(int i = 1; i <= n; ++i){
if(p[i] == p[i - 1]) continue;
while(top > 1 && judge(st[top - 1], st[top], p[i])) --top;
st[++top] = p[i];
}
for(int i = 1; i <= n; ++i){
if(p[i] == p[i - 1]) continue;
while(tp > 1 && !judge(ts[tp - 1], ts[tp], p[i])) --tp;
ts[++tp] = p[i];
}
for(int i = tp - 1; i; --i) st[++top] = ts[i];
--top;
int j = 2, k = 2, l = 2;
for(int i = 1; i <= top; ++i){
while(sig(mult(st[i], st[i + 1], st[j]) - mult(st[i], st[i + 1], st[j + 1])) <= 0) if(++j > top) j = 1;
while(sig(calc(st[i], st[i + 1], st[k]) - calc(st[i], st[i + 1], st[k + 1])) <= 0) if(++k > top) k = 1;
if(i == 1) l = k;
while(sig(calc(st[i], st[i + 1], st[l]) - calc(st[i], st[i + 1], st[l + 1])) >= 0) if(++l > top) l = 1;
d = (st[i] - st[i + 1]).dis();
R = calc(st[i], st[i + 1], st[k]) / d;
L = calc(st[i], st[i + 1], st[l]) / d;
b = fabs(mult(st[i], st[i + 1], st[j]) / d);
a = R - L;
if(a * b < ans){
ans = a * b;
Ans[1] = st[i] + (st[i + 1] - st[i]) * (R / d);
Ans[2] = Ans[1] + (st[k] - Ans[1]) * (b / (st[k] - Ans[1]).dis());
Ans[3] = Ans[2] + (st[i] - Ans[1]) * (a / R);
Ans[4] = Ans[3] + (Ans[1] - Ans[2]);
}
}
printf("%.5lf\n", ans);
double Min = 1e18, pos;
for(int i = 1; i <= 4; ++i)
if(Ans[i].y < Min)
Min = Ans[i].y, pos = i;
for(int i = pos; i <= 4; ++i)
Ans[i].print();
for(int i = 1; i < pos; ++i)
Ans[i].print();
return 0;
}
【洛谷 P3187】 [HNOI2007]最小矩形覆盖 (二维凸包,旋转卡壳)
原文:https://www.cnblogs.com/Qihoo360/p/10321748.html