给你一个序列,你需要支持以下两个操作:
A x:
在序列尾部添加一个整数\(x\),序列的长度增加\(1\)Q l r x:
询问操作,你需要找到一个位置\(p \in [l, r]\),使得:\(x \bigoplus a_p \bigoplus a_{p + 1} \bigoplus \ldots \bigoplus a_n\)最大,输出最大值是多少首先我们需要打一个可持久化的\(trie\)树来维护\(a_i\)的前缀和,这样我们就可以快速在一段区间对应的\(trie\)树上查询,查询的时候我们只需要贪心的找就可以了
另外,我们需要把询问的式子转化一下
\[
x \bigoplus a_p \bigoplus a_{p + 1} \bigoplus \ldots \bigoplus a_n = (x \bigoplus all) \bigoplus a_1 \bigoplus a_2 \bigoplus \ldots \bigoplus a_{p - 1}
\]
由于对于当前的询问,\(x \bigoplus all\)为定值,所以我们只需要在\(trie\)树上找到一个\(a_1 \bigoplus a_2 \bigoplus \ldots \bigoplus a_{p - 1}\),使其与\(x \bigoplus all?\)的异或和最大即可
#include <bits/stdc++.h>
using namespace std;
#define fst first
#define snd second
#define mp make_pair
#define squ(x) ((LL)(x) * (x))
#define debug(...) fprintf(stderr, __VA_ARGS__)
typedef long long LL;
typedef pair<int, int> pii;
template<typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
template<typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; }
inline int read() {
int sum = 0, fg = 1; char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == ‘-‘) fg = -1;
for (; isdigit(c); c = getchar()) sum = (sum << 3) + (sum << 1) + (c ^ 0x30);
return fg * sum;
}
const int maxn = 3e5 + 10;
const int inf = (1 << 24) - 1;
int n, m, a[maxn << 1], rt[maxn << 1];
namespace ST {
struct node {
int ls, rs, v;
}A[maxn << 6];
#define ls(x) A[x].ls
#define rs(x) A[x].rs
int cnt;
void change(int &nrt, int rt, int l, int r, int x) {
A[nrt = ++cnt] = A[rt], ++A[cnt].v;
if (l == r) return;
int mid = (l + r) >> 1;
if (x <= mid) change(ls(nrt), ls(rt), l, mid, x);
else change(rs(nrt), rs(rt), mid + 1, r, x);
}
int query(int x, int y, int l, int r, int v) {
if (l == r) return l;
int mid = (l + r) >> 1, len = r - mid;
if (v <= mid) {
if (A[ls(y)].v - A[ls(x)].v) return query(ls(x), ls(y), l, mid, v);
return query(rs(x), rs(y), mid + 1, r, v + len);
} else {
if (A[rs(y)].v - A[rs(x)].v) return query(rs(x), rs(y), mid + 1, r, v);
return query(ls(x), ls(y), l, mid, v - len);
}
return 0;
}
}
int main() {
#ifdef xunzhen
freopen("xor.in", "r", stdin);
freopen("xor.out", "w", stdout);
#endif
n = read(), m = read();
for (int i = 1; i <= n; i++) {
a[i] = a[i - 1] ^ read();
ST::change(rt[i], rt[i - 1], 0, inf, a[i - 1]);
}
for (int i = 1; i <= m; i++) {
static char s[10];
scanf("%s", s);
if (s[0] == ‘A‘) {
++n, a[n] = a[n - 1] ^ read();
ST::change(rt[n], rt[n - 1], 0, inf, a[n - 1]);
} else {
int l = read(), r = read(), x = read() ^ a[n];
printf("%d\n", ST::query(rt[l - 1], rt[r], 0, inf, inf ^ x) ^ x);
}
}
return 0;
}
原文:https://www.cnblogs.com/xunzhen/p/10332003.html