The set [1,2,3,...,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note:
Example 1:
Input: n = 3, k = 3 Output: "213"
Example 2:
Input: n = 4, k = 9 Output: "2314"
By observing the sequence for n = 3, we can see the permutation sequence is 1 + [2, 3] permutation, 2 + [1, 3] permutation, 3 + [1, 2] permutation. The sequence with first element = 1 has value k = 1, 2, with first element = 2 has value 3, 4, with first elemnt = 3 has value 5, 6, it‘s not hard to see that the index of the first element is (k-1)/2!
Next, we want to find the first element for n = 2, since there is only 2! permutation, the new k would be in the range [1, 2!], if you observe the original k and the permutation:
[2, 3] k = 0 -> new k = 0
[3, 2] k = 1 -> new k = 1
[1, 3] k = 2 -> new k = 0
[3, 1] k = 3 -> new k = 1
[1, 2] k = 4 -> new k = 0
[2, 1] k = 5 -> new k = 1
new k = old k / 2!, it‘s just the same problem, with smaller n and k, hence we can use either recursive or iterative to solve it.
Key taken: --k, which makes the caculation easier also rules easier to observe, if k == 0, it‘s the first sequence in the permutation, no further work needed.
Time complexity: O(n*2)
Iterative:
public class PermutationSequenceLT60 { private int calculateFactorial(int n) { int factorial = 1; for(int i = 2; i <= n; ++i) { factorial *= i; } return factorial; } public String permutation(int n, int k) { StringBuilder result = new StringBuilder(); List<Integer> nums = new LinkedList<>(); for(int i = 1; i <= n; ++i) { nums.add(i); } int factorial = calculateFactorial(n); --k; for(int i = n; k > 0 && i >= 1; --i) { factorial = factorial/i; int pos = k/factorial; result.append(nums.remove(pos)); k = k%factorial; } for(int num: nums) { result.append(num); } return result.toString(); } public static void main(String[] args) { PermutationSequenceLT60 p = new PermutationSequenceLT60(); System.out.println(p.permutation(4, 9)); for(int i = 1; i <= 6; ++i) { System.out.println(p.permutation(3, i)); } for(int i = 1; i<= 24; ++i) { System.out.println(p.permutation(4, i)); } } }
Recursive:
public class PermutationSequenceLT60 { private int calculateFactorial(int n) { int factorial = 1; for(int i = 2; i <= n; ++i) { factorial *= i; } return factorial; } private void permutationHelper(int k, List<Integer> nums, StringBuilder result, int factorial) { if(k == 0) { for(int num: nums) { result.append(num); } return; } int pos = k/factorial; result.append(nums.remove(pos)); permutationHelper(k%factorial, nums, result, factorial/nums.size()); } public String permutation(int n, int k) { StringBuilder result = new StringBuilder(); List<Integer> nums = new LinkedList<>(); for(int i = 1; i <= n; ++i) { nums.add(i); } int factorial = calculateFactorial(n-1); permutationHelper(k-1, nums, result, factorial); return result.toString(); } public static void main(String[] args) { PermutationSequenceLT60 p = new PermutationSequenceLT60(); System.out.println(p.permutation(4, 9)); for(int i = 1; i <= 6; ++i) { System.out.println(p.permutation(3, i)); } for(int i = 1; i<= 24; ++i) { System.out.println(p.permutation(4, i)); } } }
原文:https://www.cnblogs.com/taste-it-own-it-love-it/p/10349574.html