首页 > 其他 > 详细

Leetcode 115

时间:2019-02-03 11:45:10      阅读:121      评论:0      收藏:0      [点我收藏+]
? r a b b b i t
? 1 1 1 1 1 1 1 1
r 0 1 1 1 1 1 1 1
a 0 0 1 1 1 1 1 1
b 0 0 0 1 2 3 3 3
b 0 0 0 0 1 3 3 3
i 0 0 0 0 0 0 3 3
t 0 0 0 0 0 0 0 3
class Solution {
public:
    int numDistinct(string s, string t) {
        int lens = s.size()+1;
        int lent = t.size()+1;
        int a[lent][lens];
        for(int i=0;i < lens;i++){
            a[0][i] = 1;
        }
        for(int i=1;i < lent;i++){
            a[i][0] = 0;
        }
        //初始化
        for(int i=1;i < lent;i++){
            for(int j=1;j < lens;j++){
                a[i][j] = a[i][j-1] + (t[i-1] == s[j-1]?a[i-1][j-1]:0);
            }
        }
        return a[lent-1][lens-1];
    }
};

首先,若原字符串和子序列都为空时,返回1,因为空串也是空串的一个子序列。若原字符串不为空,而子序列为空,也返回1,因为空串也是任意字符串的一个子序列。而当原字符串为空,子序列不为空时,返回0,因为非空字符串不能当空字符串的子序列。理清这些,二维数组dp的边缘便可以初始化了,下面只要找出递推式,就可以更新整个dp数组了。我们通过观察上面的二维数组可以发现,当更新到dp[i][j]时,dp[i][j] >= dp[i][j - 1] 总是成立,再进一步观察发现,当 T[i - 1] == S[j - 1] 时,dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1],若不等, dp[i][j] = dp[i][j - 1],所以,综合以上,递推式为:

dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0)

Leetcode 115

原文:https://www.cnblogs.com/cunyusup/p/10349727.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!