Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3]
is symmetric:
1 / 2 2 / \ / 3 4 4 3
But the following [1,2,2,null,3,null,3]
is not:
1 / 2 2 \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
解答:
使用递归的方法最为方便,每次传入左右两个节点的指针,首先判断是否为空,其次再判断对应节点的数值是否相等,以及递归判断左子树的左子树和右子树的右子树、左子树的右子树以及右子树的左子树
代码如下:
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 bool isSymmetric(TreeNode* root) { 13 return isMirror(root, root); 14 } 15 bool isMirror(TreeNode* left, TreeNode* right) 16 { 17 if (left == nullptr && right == nullptr) 18 return true; 19 if (left == nullptr || right == nullptr) 20 return false; 21 return (left->val == right->val) && isMirror(left->right, right->left) && isMirror(left->left, right->right); 22 } 23 };
时间复杂度:O(n),n为节点数量,需要遍历所有节点
空间复杂度:O(n),递归的层数为树的深度,最差的情况下节点的数量就是树的高度,因此平均情况为线性复杂度
原文:https://www.cnblogs.com/dapeng-bupt/p/10350802.html