首页 > 其他 > 详细

CodeForces 1103E. Radix sum

时间:2019-02-03 22:32:48      阅读:169      评论:0      收藏:0      [点我收藏+]

题目简述:对任意两个(正)十进制数$a = \overline{a_{k-1}\dots a_1a_0}$和$b = \overline{b_{k-1}\dots b_1b_0}$,定义其【十进制按位加】$c = a \oplus b = \overline{c_{k-1}\dots c_1c_0}$,其中$c_i = (a_i+b_i) \bmod 10$。给定$1 \leq n \leq 10^5$个正整数$0 \leq x_i < 10^5$,对每个$0 \leq k < n$,求有多少个下标序列$1 \leq i_1, i_2, \dots, i_n \leq n$,使得

$$\bigoplus_{j=1}^n x_{i_j} = k. $$

答案$\bmod 2^{58}$。

解:code

 

CodeForces 1103E. Radix sum

原文:https://www.cnblogs.com/TinyWong/p/10351109.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!