A tournament is a directed graph without self-loops in which every pair of vertexes is connected by exactly one directed edge. That is, for any two vertexes u and v (u?≠?v) exists either an edge going from u to v, or an edge from v to u.
You are given a tournament consisting of n vertexes. Your task is to find there a cycle of length three.
Input
The first line contains an integer n (1?≤?n?≤?5000). Next n lines contain the adjacency matrix A of the graph (without spaces). Ai,?j?=?1 if the graph has an edge going from vertex i to vertex j, otherwise Ai,?j?=?0. Ai,?j stands for the j-th character in the i-th line.
It is guaranteed that the given graph is a tournament, that is, Ai,?i?=?0,?Ai,?j?≠?Aj,?i (1?≤?i,?j?≤?n,?i?≠?j).
Output
Print three distinct vertexes of the graph a1, a2, a3 (1?≤?ai?≤?n), such that Aa1,?a2?=?Aa2,?a3?=?Aa3,?a1?=?1, or "-1", if a cycle whose length equals three does not exist.
If there are several solutions, print any of them.
Examples
5
00100
10000
01001
11101
11000
1 3 2
5
01111
00000
01000
01100
01110
-1
#include <stdio.h> #include <stdlib.h> #include <string.h> using namespace std; const int maxn=5050; char ana[maxn][maxn]; bool bna[maxn][maxn],vis[maxn]; int n,a,b,c; int dfs(int x,int y) { vis[x]=1; for(int i=1;i<=n;i++) { if(bna[x][i]) { if(y&&bna[i][y]) { a=y; b=x; c=i; return 1; } if(!vis[i]) if(dfs(i,x)) return 1; } } return 0; } int main() { scanf("%d",&n); for(int i=1;i<=n;i++) { scanf("%s",ana[i]+1); for(int j=1;j<=n;j++) { bna[i][j]=ana[i][j]-‘0‘; } } for(int i=1;i<=n;i++) { if(!vis[i]) { if(dfs(i,0)) { printf("%d %d %d\n",a,b,c); return 0; } } } printf("-1\n"); return 0; }
原文:https://www.cnblogs.com/EchoZQN/p/10351489.html