首页 > 其他 > 详细

数据预处理PCA,标准化

时间:2019-02-05 01:00:12      阅读:421      评论:0      收藏:0      [点我收藏+]

1.PCA

from sklearn.decomposition import RandomizedPCA

# 100维度
n_components = 100
pca = RandomizedPCA(n_components=n_components, whiten=True).fit(x_train) 


# 将降维的再调回去 eigenfaces = pca.components_.reshape((n_components, h, w)) # 特征提取 x_train_pca = pca.transform(x_train) x_test_pca = pca.transform(x_test)

 

2.标准化

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1.,  2.],[ 2.,  0.,  0.],[ 0.,  1., -1.]])
scaler= preprocessing.MinMaxScaler(feature_range=(-1, 1)).fit(X)
X_scaled = scaler.transform(X)

# 将标准化的数据转化为原数据
X1=scaler.inverse_transform(X_scaled)

 

数据预处理PCA,标准化

原文:https://www.cnblogs.com/chengziaichiyu/p/10352413.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!