首页 > 编程语言 > 详细

吴裕雄 python深度学习与实践(9)

时间:2019-02-08 13:31:26      阅读:243      评论:0      收藏:0      [点我收藏+]
import numpy as np
import tensorflow as tf

inputX = np.random.rand(100)
inputY = np.multiply(3,inputX)  + 1

x = tf.placeholder("float32")
y_ = tf.placeholder("float32")

weight = tf.Variable(0.25)
bias = tf.Variable(0.25)
y = tf.multiply(weight,x) + bias

loss = tf.reduce_sum(tf.pow((y - y_),2))
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss)

sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
for _ in range(1000):
    sess.run(train_step,feed_dict={x:inputX,y_:inputY})
    if _%20 == 0:
        print("W的值为: ",weight.eval(session=sess),";  bias的值为: " ,bias.eval(session=sess))

技术分享图片

 

吴裕雄 python深度学习与实践(9)

原文:https://www.cnblogs.com/tszr/p/10356086.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!