首页 > 其他 > 详细

[bzoj3451]Tyvj1953 Normal——点分治+fft

时间:2019-02-13 15:10:24      阅读:185      评论:0      收藏:0      [点我收藏+]

题目大意:

求随机点分治的期望复杂度,每次对一颗大小为\(n\)的子树需要\(O(n)\)的复杂度。

思路:

考虑计算每个点期望下被算的次数,根据期望的线性性,最后将每个点的答案加起来就可以了。
计算点u的计算次数可以考虑v对点u的贡献,即在v作为分治重心的时候u在v所在的子树里面。
不难发现如果v对u产生了贡献,那么从u到v的路径上,v必定是第一个选的,路径外的点怎么选没有影响,于是期望贡献为\(\frac{1}{dis(u,v)+1}\)
答案即\(\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{1}{dis(i,j)+1}\),又转化成了树上路径问题,考虑点分治,计算出每颗子树内的所有路径长度的出现次数,直接FFT优化即可。

/*=======================================
 * Author : ylsoi
 * Time : 2019.2.13
 * Problem : bzoj3451
 * E-mail : ylsoi@foxmail.com
 * ====================================*/
#include<bits/stdc++.h>

#define REP(i,a,b) for(int i=a,i##_end_=b;i<=i##_end_;++i)
#define DREP(i,a,b) for(int i=a,i##_end_=b;i>=i##_end_;--i)
#define debug(x) cout<<#x<<"="<<x<<" "
#define fi first
#define se second
#define mk make_pair
#define pb push_back
typedef long long ll;

using namespace std;

void File(){
    freopen("bzoj3451.in","r",stdin);
    freopen("bzoj3451.out","w",stdout);
}

template<typename T>void read(T &_){
    _=0; T f=1; char c=getchar();
    for(;!isdigit(c);c=getchar())if(c=='-')f=-1;
    for(;isdigit(c);c=getchar())_=(_<<1)+(_<<3)+(c^'0');
    _*=f;
}

const int maxn=3e4+10;
const int inf=0x3f3f3f3f;
const double pi=acos(-1);
int n;
int beg[maxn],las[maxn<<1],to[maxn<<1],cnte=1;
double ans;

void add(int u,int v){
    las[++cnte]=beg[u],beg[u]=cnte,to[cnte]=v;
    las[++cnte]=beg[v],beg[v]=cnte,to[cnte]=u;
}

struct cp{
    double x,y;
    cp(double xx=0,double yy=0){
        x=xx,y=yy;
    }
};
cp operator + (cp a,cp b){return cp(a.x+b.x,a.y+b.y);}
cp operator - (cp a,cp b){return cp(a.x-b.x,a.y-b.y);}
cp operator * (cp a,cp b){return cp(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
cp operator / (cp a,double b){return cp(a.x/b,a.y/b);}

int lim,cnt,dn[maxn<<2];
cp g[maxn<<2],ig[maxn<<2];

void fft(cp *A,int ty){
    REP(i,0,lim-1)if(i<dn[i])swap(A[i],A[dn[i]]);
    for(int len=1;len<lim;len<<=1){
        cp w= ty==1 ? g[len<<1] : ig[len<<1];
        for(int L=0;L<lim;L+=len<<1){
            cp wk=cp(1,0);
            REP(i,L,L+len-1){
                cp u=A[i],v=A[i+len]*wk;
                A[i]=u+v;
                A[i+len]=u-v;
                wk=wk*w;
            }
        }
    }
    if(ty==-1)
        REP(i,0,lim-1)A[i]=A[i]/lim;
}

int sz[maxn],tot_sz,Min_sz,rt;
bool vis[maxn];

void findrt(int u,int fh){
    int Max_sz=0;
    sz[u]=1;
    for(int i=beg[u];i;i=las[i]){
        int v=to[i];
        if(v==fh || vis[v])continue;
        findrt(v,u);
        sz[u]+=sz[v];
        Max_sz=max(Max_sz,sz[v]);
    }
    Max_sz=max(Max_sz,tot_sz-sz[u]);
    if(Max_sz<Min_sz){
        Min_sz=Max_sz;
        rt=u;
    }
}

int dis[maxn],cnt_dis;

void get_dis(int u,int fh,int d){
    dis[++cnt_dis]=d;
    for(int i=beg[u];i;i=las[i]){
        int v=to[i];
        if(v==fh || vis[v])continue;
        get_dis(v,u,d+1);
    }
}

cp a[maxn<<2];

void solve(int u,int s,int ty){
    cnt_dis=0;
    get_dis(u,0,0);
    int max_dis=0;
    REP(i,1,cnt_dis)max_dis=max(max_dis,dis[i]);
    lim=1,cnt=0;
    while(lim<=max_dis*2)lim<<=1,++cnt;
    if(!cnt)cnt=1;
    REP(i,0,lim-1){
        dn[i]=dn[i>>1]>>1|((i&1)<<(cnt-1));
        a[i]=cp(0,0);
    }
    REP(i,1,cnt_dis)a[dis[i]].x+=1;
    fft(a,1);
    REP(i,0,lim-1)a[i]=a[i]*a[i];
    fft(a,-1);
    REP(i,0,lim-1)if(i+s>0)
        ans=ans+a[i].x/(i+s)*ty;
}

void divide(int u){
    vis[u]=1; findrt(u,0);
    solve(u,1,1);
    for(int i=beg[u];i;i=las[i]){
        int v=to[i];
        if(vis[v])continue;
        solve(v,3,-1);
        tot_sz=sz[v],Min_sz=inf;
        findrt(v,0);
        divide(rt);
    }
}

int main(){
    File();
    read(n);
    int u,v;
    REP(i,1,n-1){
        read(u),read(v);
        add(u+1,v+1);
    }

    lim=1;
    while(lim<=n+n)lim<<=1;
    g[lim]=cp(cos(pi*2.0/lim),sin(pi*2.0/lim));
    ig[lim]=cp(cos(pi*2.0/lim),-sin(pi*2.0/lim));
    for(int i=lim>>1;i;i>>=1){
        g[i]=g[i<<1]*g[i<<1];
        ig[i]=ig[i<<1]*ig[i<<1];
    }

    tot_sz=n,Min_sz=inf;
    findrt(1,0);
    divide(rt);

    printf("%.4lf\n",round(ans*1e4)/1e4);

    return 0;
}

[bzoj3451]Tyvj1953 Normal——点分治+fft

原文:https://www.cnblogs.com/ylsoi/p/10369642.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!