首页 > 其他 > 详细

cs20_5-2

时间:2019-02-13 17:59:41      阅读:162      评论:0      收藏:0      [点我收藏+]

1. Assignment_1

1.1 1d解答

  1. tf.where()

    • 我的实践代码:

      def test_4_2():
          x = tf.constant([[True, False], [True, False]])
          x_where = tf.where(x) # Returns locations(coordinates ) of true values in a boolean tensor.
          # x中有两个True,所以返回了2个1-d tensor [],[] # 先确定几个True以确定返回几个坐标
          # 又因为x是2-d tensor, 所以定位True elem也要2-d indeies(行和列),即[0,0], [1,0] # 再确定坐标是什么
          print(sess.run(x_where))
          y = tf.constant(
              [
                  [
                      [True, False],[True, False]
                  ],
                  [
                      [False, True],[False, True]
                  ],
                  [
                      [False, False],[False, True]
                  ]
              ]
          )
          y_where = tf.where(y) # 5个True elme,所以返回5个坐标;又因为y是3-dim,所以坐标是                             3-d tensor(x,y,z)
          print(sess.run(y_where)) # [0,0,0], [0,1,0], [1,0,1], [1,1,1], [2,1,1]
      test_4_2()
    • 参考:

      [1] https://blog.csdn.net/A_a_ron/article/details/79048446 (讲得不错)

      [2] https://blog.csdn.net/ustbbsy/article/details/79564828

      [3] http://www.tensorfly.cn/tfdoc/api_docs/python/math_ops.html#where (还不错的第三方文档)

      [4] https://www.tensorflow.org/api_docs/python/tf/where (tf官方文档基本没有用,没有例子只有干巴巴的文字解释,晦涩难懂)

  2. tf.gater()

    • 我的示例代码

      def test_4_3():
          temp = tf.range(0, 10) * 10 + tf.constant(1, shape=[10])
          temp2 = tf.gather(temp, [1, 5, 9]) # 相当于根据indeies提取元素
          with tf.Session() as sess:
              print(sess.run(temp))
              print(sess.run(temp2))
      test_4_3()
      
      def test_4_4():
          a = tf.Variable([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]])
          index_a = tf.Variable([0, 2])
          b = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
          index_b = tf.Variable([2, 4, 6, 8])
          with tf.Session() as sess:
              sess.run(tf.global_variables_initializer()) # 变量要先初始化
              print(sess.run(tf.gather(a, index_a)))
              print(sess.run(tf.gather(b, index_b)))
              # [[ 1  2  3  4  5],[11 12 13 14 15]]
              #  [3 5 7 9]
      test_4_4()
    • 参考:

      [1] https://blog.csdn.net/guotong1988/article/details/53172882

      [2] https://blog.csdn.net/Cyiano/article/details/76087747

  3. tf.greater

    • 我的示例代码

      # 判断函数。首先张量x和张量y的尺寸要相同,输出的tf.greater(x, y)也是一个和x,y尺寸相同的张量。如果x的某个元素比y中对应位置的元素大,则tf.greater(x, y)对应位置返回True,否则返回False。与此类似的函数还有tf.greater_equal
      
      def test_4_5():
          x = tf.Variable([[1, 2, 3], [6, 7, 8], [11, 12, 13]])
          y = tf.Variable([[0, 1, 2], [5, 6, 7], [10, 11, 12]])
          x1 = tf.Variable([[1, 2, 3], [6, 7, 8], [11, 12, 13]])
          y1 = tf.Variable([[10, 1, 2], [15, 6, 7], [10, 21, 12]])
          with tf.Session() as sess:
              sess.run(tf.global_variables_initializer())
              print(sess.run(tf.greater(x, y)))
              print(sess.run(tf.greater(x1, y1)))
              # [[ True  True  True],[ True  True  True],[ True  True  True]]
              #  [[False  True  True],[False  True  True],[ True False  True]]
      test_4_5()
    • 参考:

      [1] https://blog.csdn.net/Cyiano/article/details/76087747 (例子简单易懂)

  4. 解决A1_1d:

    def test_4():
        x = tf.constant([29.05088806, 27.61298943, 31.19073486, 29.35532951,
                         30.97266006, 26.67541885, 38.08450317, 20.74983215,
                         34.94445419, 34.45999146, 29.06485367, 36.01657104,
                         27.88236427, 20.56035233, 30.20379066, 29.51215172,
                         33.71149445, 28.59134293, 36.05556488, 28.66994858], name="x")
        y = tf.ones(shape=x.shape, dtype=tf.float32) # 构造与x相同shape的tensor
        y = tf.multiply(y, tf.constant(30.0))
        print("y: ", sess.run(y))
        x_bool = tf.greater(x,y,name="x_bool") # 获得一个bool tensor
        x_index = tf.where(x_bool) # 获得 x>30的elme index
        out = tf.gather(x,x_index) # 根据x>30的indexies再从x中取elems
        print("test4-x: ", sess.run(x))
        print("test4-x>30: ", sess.run(out))
    test_4()
  5. 拓展:tf其他几个常见函数:

    • tf.concat

      # 把一组向量从某一维上拼接起来,很向numpy中的Concatenate,官网例子:
      
      t1 = [[1, 2, 3], [4, 5, 6]]
      t2 = [[7, 8, 9], [10, 11, 12]]
      tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
      tf.concat([t1, t2], 1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
      
      # tensor t3 with shape [2, 3]
      # tensor t4 with shape [2, 3]
      tf.shape(tf.concat([t3, t4], 0)) ==> [4, 3]
      tf.shape(tf.concat([t3, t4], 1)) ==> [2, 6]
      
      # 其实,如果是list类型的话也是可以的,只要是形似Tensor,最后tf.concat返回的还是Tensor类型
    • tf.gather_nd

      # tf.gather(): 类似于数组的索引,可以把向量中某些索引值提取出来,得到新的向量,适用于要提取的索引为不连续的情况。这个函数似乎只适合在一维的情况下使用。
      # gather_nd同上,但允许在多维上进行索引,例子只展示了一种很简单的用法,更复杂的用法可见官网。
      
      import tensorflow as tf 
      
      a = tf.Variable([[1,2,3,4,5], [6,7,8,9,10], [11,12,13,14,15]])
      index_a = tf.Variable([[0,2], [0,4], [2,2]])
      
      with tf.Session() as sess:
          sess.run(tf.global_variables_initializer())
          print(sess.run(tf.gather_nd(a, index_a)))
      #  [ 3  5 13]
    • tf.cast

      # 转换数据类型。
      
      a = tf.constant([0, 2, 0, 4, 2, 2], dtype='int32')
      print(a)
      # <tf.Tensor 'Const_1:0' shape=(6,) dtype=int32>
      
      b = tf.cast(a, 'float32')
      print(b)
      # <tf.Tensor 'Cast:0' shape=(6,) dtype=float32>
    • tf.expand_dims & tf.squeeze

      # 增加 / 压缩张量的维度。
      
      a = tf.constant([0, 2, 0, 4, 2, 2], dtype='int32')
      print(a)
      # <tf.Tensor 'Const_1:0' shape=(6,) dtype=int32>
      
      b = tf.expand_dims(a, 0)
      print(b)
      # <tf.Tensor 'ExpandDims:0' shape=(1, 6) dtype=int32>
      
      print(tf.squeeze(b, 0))
      # <tf.Tensor 'Squeeze:0' shape=(6,) dtype=int32>
    • 参考:

      [1] https://blog.csdn.net/Cyiano/article/details/76087747 (例子简单易懂)

      [2] https://www.tensorflow.org/versions/r1.1/api_docs/python/tf/concat (明白了:官网文档的某些api有详细例子,某些没有就很坑)

1.2 其他题解答

  1. tf.diag

    • 示例代码

      def test5(): # 这也是1e
          diag = tf.range(1,7) # [1,7)
          print("test_5: ", sess.run(tf.diag(diagonal=diag)))
      test5()
      
      def test5_2():
          diag = tf.constant([1,2,3,5])
          print("test_5_2: ", sess.run(tf.diag(diagonal=diag)))
      test5_2()
      
      # 其实diagonal还能是 2-d/3-d tensor, 详见下方link/官方api
    • 参考:

      [1] https://blog.csdn.net/baidu_15113429/article/details/78082282

  2. tf.matrix_determinant

    • 示例

      def test6():
          x = tf.random_normal([10,10], mean=0.5, stddev=1.5)
          print("test6, x: ", sess.run(x))
          print("test6, det(x): ", sess.run(tf.matrix_determinant(x)))
      test6()
      
      def test6_2():
          A1 = [[1, 1, 1], [1, -1, -1], [5, -2, 2]]
          A = tf.constant(A1, tf.float32)
          print(sess.run(A))
          d = tf.matrix_determinant(A)
          print("det(d): ", sess.run(d))
      test6_2()
    • 参考

      [1] https://segmentfault.com/a/1190000014591047 (包含很多矩阵的基本操作)

  3. tf.unique

    • 代码示例

      def test7():
          x = tf.constant([5, 2, 3, 5, 10, 6, 2, 3, 4, 2, 1, 1, 0, 9])
          y, idx = tf.unique(x) # y是去重之后的1-d tensor, idx是原来x的index,只不过
          # x中重复的元素的index被换成该重复元素第一次出现的index
          print("test7: idx: {}, x: {}".format(sess.run(y), sess.run(idx)))
      test7()
    • 参考

      [1] https://www.tensorflow.org/api_docs/python/tf/unique (终于碰到一个api的官方文档有例子了)

  4. tf.reduce_mean

  5. 最后一个作业,基于tf.reduce_mean,sum, tf.cond,有点像实现huber_loss

    def test8():
        x, y = tf.random_normal([300]), tf.random_normal([300])
        print("test8, \n x:{} \n y:{}".format(sess.run(x), sess.run(y)))
        residual = x - y # 返回一个tensor(shape同x,y)
        mean_residual = tf.reduce_mean(residual)
        #
        def f1(): return tf.reduce_mean(tf.square(residual)) # 默认使用上述的全局residual
        def f2(): return tf.reduce_sum(tf.abs(residual))
        return tf.cond(mean_residual < 0, f1, f2)
    res = test8()
    print("test8, res is:{}".format(sess.run(res)))
  6. 上述这些小题目的官方solutions:

    https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/master/assignments/01/q1_sol.py

1.3 LR_MNIST

  1. 以前写过,有时间再写一次

1.4 LR_notMNIST

  1. 一个像MNIST的新数据集:notMNIST
  2. 有时间写一下

1.5 实现97%以上的MNIST的acc

  1. 参考:http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
  2. 有时间写一下

2. CNN部分实践

2.1 一个toy example

  1. 网络图:

    技术分享图片

  2. 一些准备

    • ubuntu 16.04 + conda + py3.6 + opencv: https://www.jianshu.com/p/a1db7533b5da
    • python/tf中的 -1 or None大多数情况下指的是:程序自动推断这个值是多少(-1 or None只是一个“自动推断”的标识符)
    • if i % int(data.train.num_examples/batch_size) == 0:表示刚执行完一个epoch
    • 数据集问题已解决(通过kaggle),但是代码风格不太喜欢(有点旧了),抽时间再完成这个

2.2 参考

3. Assignment_2

  • 参见7_style_transfer

cs20_5-2

原文:https://www.cnblogs.com/LS1314/p/10371197.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!