首页 > 其他 > 详细

cs20_4-2

时间:2019-02-13 18:00:29      阅读:164      评论:0      收藏:0      [点我收藏+]

0. 华师-张凯旭问我启发的一个学习资料

1. 得到的一些经验

  • 帮助别人,回答别人比较尖锐的问题的过程中,学到的东西还是很多的,搜索的过程中,总能得到意外的收获

  • 回到上面张凯旭这个问题:

  • 1-如何加载/保存原模型?

    • 目前tf(1.8)每次保存模型其实分三个文件:xxx.meta, xxx.index, xxx.data-yyy

      技术分享图片

      (1)xxx.meta指的是meta graph,这是一个 protocol buffer,保存了完整的 Tensorflow 图,即所有变量、操作和集合等。(2)xxx.index和xxx.data-yyy都是一个二进制文件包含了所有权重、偏置、梯度和其他变量的值。

    • 并且多次保存最终形成一个checkpoint文件

      技术分享图片

      查看其内容:保存有最近若干个step保存的ckpt name,并且默认最后一次保存的ckpt为系统重新加载的model:

      技术分享图片

    • 所以最终保存有两类信息:graph和value of variables.

      import tensorflow as tf
      w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
      w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
      saver = tf.train.Saver()
      sess = tf.Session()
      sess.run(tf.global_variables_initializer())
      # saver.save(sess, 'my_test_model')
      saver.save(sess, 'my_test_model',global_step=1000) # 这种更常见,带上step
      # 一些特殊设置
      #saves a model every 2 hours and maximum 4 latest models are saved.
      # saver = tf.train.Saver(max_to_keep=4, keep_checkpoint_every_n_hours=2)
      
      # This will save following files in Tensorflow v >= 0.11
      # my_test_model-1000.data-00000-of-00001
      # my_test_model-1000.index
      # my_test_model-1000.meta
      # checkpoint
  • 2-如何加载预训练的模型

     # 1-加载网络结构
     saver = tf.train.import_meta_graph('my_test_model-1000.meta') # 将定义在.meta的网络导入到当前图中,但还没有参数值
    
    # 2-加载参数
    saver.restore(sess, tf.train.latest_checkpoint('./'))
    
    # 总结一下:
    with tf.Session() as sess:
      new_saver = tf.train.import_meta_graph('my_test_model-1000.meta')
      new_saver.restore(sess, tf.train.latest_checkpoint('./'))
    
    
    # 再举个例子:
    with tf.Session() as sess:    
        saver = tf.train.import_meta_graph('my-model-1000.meta') # 假设这里面有w1,w2
        saver.restore(sess,tf.train.latest_checkpoint('./'))
        print(sess.run('w1:0')) # 现在w1在当前sess可使用,直接使用即可
    ##Model has been restored. Above statement will print the saved value of w1.
  • 关于restore之后的操作:有3种:(1)继续training(接着上次的断点继续training,这个最简单); (2)prediction(换个input_X做inference); (3)修改网络结构做fine-tune;
  • 参考自:https://www.jianshu.com/p/8850127ed25d

2. 一个toy example: 先saver再restore最后做prediction

  1. 创建model A:

    import tensorflow as tf
    
    #Prepare to feed input, i.e. feed_dict and placeholders
    w1 = tf.placeholder("float", name="w1")
    w2 = tf.placeholder("float", name="w2")
    b1= tf.Variable(2.0,name="bias")
    feed_dict ={w1:4,w2:8}
    
    #Define a test operation that we will restore
    w3 = tf.add(w1,w2)
    w4 = tf.multiply(w3,b1,name="op_to_restore")
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    #Create a saver object which will save all the variables
    saver = tf.train.Saver()
    
    #Run the operation by feeding input
    print sess.run(w4,feed_dict)
    #Prints 24 which is sum of (w1+w2)*b1 
    
    #Now, save the graph
    saver.save(sess, 'my_test_model',global_step=1000)
    
    ##############################################################################
    # 与上面那段程序无关,
    # 是科普:如何基于graph来获取graph中的variable/Tensor/placeholders 
    #How to access saved variable/Tensor/placeholders 
    # 先获取graph: e.g. graph = tf.get_default_graph()
    w1 = graph.get_tensor_by_name("w1:0")
    ## How to access saved operation
    op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
  2. restore A 并且 重新使用new_input做prediction:

    import tensorflow as tf
    
    sess=tf.Session()    
    #First let's load meta graph and restore weights
    saver = tf.train.import_meta_graph('my_test_model-1000.meta')
    saver.restore(sess,tf.train.latest_checkpoint('./'))
    
    
    # Now, let's access and create placeholders variables and
    # create feed-dict to feed new data
    
    graph = tf.get_default_graph()
    w1 = graph.get_tensor_by_name("w1:0")
    w2 = graph.get_tensor_by_name("w2:0")
    feed_dict ={w1:13.0,w2:17.0} # new_input,用来做prediction
    
    #Now, access the op that you want to run. 
    op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
    
    print sess.run(op_to_restore,feed_dict)
    #This will print 60 which is calculated 
    #using new values of w1 and w2 and saved value of b1
  3. restore A 然后 fine-tune A

    import tensorflow as tf
    
    sess=tf.Session()    
    #First let's load meta graph and restore weights
    saver = tf.train.import_meta_graph('my_test_model-1000.meta')
    saver.restore(sess,tf.train.latest_checkpoint('./'))
    
    
    # Now, let's access and create placeholders variables and
    # create feed-dict to feed new data
    
    graph = tf.get_default_graph()
    w1 = graph.get_tensor_by_name("w1:0")
    w2 = graph.get_tensor_by_name("w2:0")
    feed_dict ={w1:13.0,w2:17.0}
    
    #Now, access the op that you want to run. 
    op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
    
    #Add more to the current graph
    add_on_op = tf.multiply(op_to_restore,2) # 这是相比A新增的一个op
    
    print sess.run(add_on_op,feed_dict)
    #This will print 120. # 相当于在最后一个op后面再接一个op,其实在A任何地方都是可以修改的

3. 一个真实例子:先saver再restore最后做fine-tune

# 部分代码,有时间再改为完整的真实代码
# ......
# ......
saver = tf.train.import_meta_graph('vgg.meta')
saver.restore(sess,tf.train.latest_checkpoint('./')) # 加载预训练好的一组变量值
# Access the graph
graph = tf.get_default_graph()
## Prepare the feed_dict for feeding data for fine-tuning
 
#Access the appropriate output for fine-tuning
fc7= graph.get_tensor_by_name('fc7:0')
 
#use this if you only want to change gradients of the last layer
fc7 = tf.stop_gradient(fc7) # It's an identity function
fc7_shape= fc7.get_shape().as_list()
 
new_outputs=2
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
output = tf.matmul(fc7, weights) + biases
pred = tf.nn.softmax(output)
 
# Now, you run this with fine-tuning data in sess.run()
# 定义loss, 然后train_op, 然后run(train_op)进行bp
  • 本代码,未完待续...

4. 参考:

https://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/

两个先修实践练习:

(1) https://cv-tricks.com/artificial-intelligence/deep-learning/deep-learning-frameworks/tensorflow/tensorflow-tutorial/

(2) https://cv-tricks.com/tensorflow-tutorial/training-convolutional-neural-network-for-image-classification/

cs20_4-2

原文:https://www.cnblogs.com/LS1314/p/10371171.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!