A:签到
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 110
char getc(){char c=getchar();while ((c<‘A‘||c>‘Z‘)&&(c<‘a‘||c>‘z‘)&&(c<‘0‘||c>‘9‘)) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<‘0‘||c>‘9‘) {if (c==‘-‘) f=-1;c=getchar();}
while (c>=‘0‘&&c<=‘9‘) x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,cnt[N];
signed main()
{
/*#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#endif*/
n=read();
for (int i=1;i<=n;i++)
{
int m=read();
while (m--) cnt[read()]++;
}
for (int i=1;i<=100;i++) if (cnt[i]==n) cout<<i<<‘ ‘;
return 0;
//NOTICE LONG LONG!!!!!
}
B:考虑模意义下每个数的贡献即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1100
char getc(){char c=getchar();while ((c<‘A‘||c>‘Z‘)&&(c<‘a‘||c>‘z‘)&&(c<‘0‘||c>‘9‘)) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<‘0‘||c>‘9‘) {if (c==‘-‘) f=-1;c=getchar();}
while (c>=‘0‘&&c<=‘9‘) x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,cnt[N];
ll ans;
signed main()
{
/*#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#endif*/
n=read(),m=read();
for (int i=1;i<=m;i++) cnt[i*i%m]+=n/m+(n%m>=i);
ans=1ll*cnt[0]*cnt[0];
for (int i=1;i<m;i++) ans+=1ll*cnt[i]*cnt[m-i];
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}
C:如果上一轮对方选择了某一组英雄中的一个,而另一个还没被选,显然只能选择他。否则显然应该先把每一组英雄中价值较大的选中,这样对方必须选择另一个,最后再将剩余英雄从大到小选取即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2100
char getc(){char c=getchar();while ((c<‘A‘||c>‘Z‘)&&(c<‘a‘||c>‘z‘)&&(c<‘0‘||c>‘9‘)) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<‘0‘||c>‘9‘) {if (c==‘-‘) f=-1;c=getchar();}
while (c>=‘0‘&&c<=‘9‘) x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,a[N<<1],match[N<<1],cnt;
bool flag[N<<1];
signed main()
{
/*#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#endif*/
n=read(),m=read();
for (int i=1;i<=2*n;i++) a[i]=read();
for (int i=1;i<=m;i++)
{
int x=read(),y=read();
match[x]=y,match[y]=x;
}
int t=read(),x=0;
if (t==2) {x=read();flag[x]=1;cnt++;}
while (cnt<2*n)
{
if (match[x]&&!flag[match[x]]) cout<<match[x]<<endl,flag[match[x]]=1,cnt++;
else
{
bool f=0;
for (int i=1;i<=2*n;i++)
if (match[i]&&!flag[i])
{
if (a[i]>a[match[i]]) cout<<i<<endl,flag[i]=1,cnt++;
else cout<<match[i]<<endl,flag[match[i]]=1,cnt++;
f=1;
break;
}
if (!f)
{
int u=0;
for (int i=1;i<=2*n;i++)
if (!flag[i]&&a[i]>a[u]) u=i;
cout<<u<<endl,flag[u]=1,cnt++;
}
}
if (cnt==2*n) break;
x=read();flag[x]=1;cnt++;
}
return 0;
//NOTICE LONG LONG!!!!!
}
D:大胆猜想答案等于子树内叶子数量。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<‘A‘||c>‘Z‘)&&(c<‘a‘||c>‘z‘)&&(c<‘0‘||c>‘9‘)) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<‘0‘||c>‘9‘) {if (c==‘-‘) f=-1;c=getchar();}
while (c>=‘0‘&&c<=‘9‘) x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,fa[N],size[N],p[N],t;
struct data{int to,nxt;
}edge[N<<1];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
size[k]=(p[k]==0);
for (int i=p[k];i;i=edge[i].nxt)
{
dfs(edge[i].to);
size[k]+=size[edge[i].to];
}
}
signed main()
{
/*#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#endif*/
n=read();
for (int i=2;i<=n;i++) fa[i]=read(),addedge(fa[i],i);
dfs(1);
sort(size+1,size+n+1);
for (int i=1;i<=n;i++) printf("%d ",size[i]);
return 0;
//NOTICE LONG LONG!!!!!
}
E:暴力枚举0串的长度,显然1串的长度可以由此确定,然后哈希暴力匹配判断即可。复杂度大约线性。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define int long long
#define N 2000010
char getc(){char c=getchar();while ((c<‘A‘||c>‘Z‘)&&(c<‘a‘||c>‘z‘)&&(c<‘0‘||c>‘9‘)) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<‘0‘||c>‘9‘) {if (c==‘-‘) f=-1;c=getchar();}
while (c>=‘0‘&&c<=‘9‘) x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,cnt0,cnt1,ans,Hash[2][N],P[2],Q[2][N];
char a[N],b[N];
int get(int x,int y,int op)
{
return (Hash[op][y]-1ll*Hash[op][x-1]*Q[op][y-x+1]%P[op]+P[op])%P[op];
}
signed main()
{
/*#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#endif*/
scanf("%s",a+1);n=strlen(a+1);
scanf("%s",b+1);m=strlen(b+1);
for (int i=1;i<=n;i++) if (a[i]==‘0‘) cnt0++;else cnt1++;
P[0]=1000000007,P[1]=19260817;
for (int i=1;i<=m;i++) Hash[0][i]=(Hash[0][i-1]*509ll+b[i])%P[0];
for (int i=1;i<=m;i++) Hash[1][i]=(Hash[1][i-1]*509ll+b[i])%P[1];
Q[0][0]=Q[1][0]=1;
for (int i=1;i<=m;i++) Q[0][i]=Q[0][i-1]*509ll%P[0];
for (int i=1;i<=m;i++) Q[1][i]=Q[1][i-1]*509ll%P[1];
for (int i=1;i<=m;i++)
if (m>cnt0*i&&(m-cnt0*i)%cnt1==0)
{
int j=(m-cnt0*i)/cnt1;
int cur=1,pos0=0,pos1=0;
for (int x=1;x<=n;x++)
if (a[x]==‘0‘) pos0=cur,cur+=i;
else pos1=cur,cur+=j;
cur=1;int tot=1;
if (i==j)
{
tot=0;
for (int x=1;x<=i;x++)
if (b[pos0+x-1]!=b[pos1+x-1]) {tot=1;break;}
}
if (tot==0) continue;
for (int x=1;x<=n;x++)
if (a[x]==‘0‘)
{
tot=(get(cur,cur+i-1,0)==get(pos0,pos0+i-1,0)&&get(cur,cur+i-1,1)==get(pos0,pos0+i-1,1));
cur+=i;
if (tot==0) break;
}
else
{
tot=(get(cur,cur+j-1,0)==get(pos1,pos1+j-1,0)&&get(cur,cur+j-1,1)==get(pos1,pos1+j-1,1));
cur+=j;
if (tot==0) break;
}
ans+=tot;
}
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}
F:先不考虑training。显然如果确定了切题集合,应该按照难度从高到低做。于是按难度从高到低排序,设f[i][j][k]为前i个题切j个,得到的分数和为k时的最小耗时。复杂度T*10*n^3。training时间可以三分,但套上去就多了个log跑不过了。事实上training时间不影响决策,并且有training后可以直接算出答案,dp完解方程即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 110
#define inf 10000000000000000
char getc(){char c=getchar();while ((c<‘A‘||c>‘Z‘)&&(c<‘a‘||c>‘z‘)&&(c<‘0‘||c>‘9‘)) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<‘0‘||c>‘9‘) {if (c==‘-‘) f=-1;c=getchar();}
while (c>=‘0‘&&c<=‘9‘) x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int T,n;
const double eps=1E-8;
double c,t,f[N][N][N*10],p[N];
struct data
{
int x,y;
bool operator <(const data&a) const
{
return x>a.x;
}
}a[N];
double work(double a,double b,double c)
{
return (-b+sqrt(b*b-4*a*c))/(2*a);
}
int calc()
{
for (int i=n*10;i>=0;i--)
for (int j=0;j<=n;j++)
{//c*x^2+(1-c(t-10*j))x+f[j][i]-(t-10*j)
double u=max(0.0,work(c,1-c*(t-10*j),f[n][j][i]+10*j-t));
if (f[n][j][i]/(u*c+1)+10*j+u<=t+eps) return i;
}
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("f.in","r",stdin);
freopen("f.out","w",stdout);
const char LL[]="%I64d\n";
#endif
T=read();
p[0]=1;for (int i=1;i<=100;i++) p[i]=p[i-1]*0.9;
while (T--)
{
n=read();
cin>>c>>t;
for (int i=1;i<=n;i++) a[i].x=read(),a[i].y=read();
sort(a+1,a+n+1);
for (int i=0;i<=n;i++)
for (int j=0;j<=n;j++)
for (int k=0;k<=n*10;k++)
f[i][j][k]=inf;
f[0][0][0]=0;
for (int i=1;i<=n;i++)
for (int j=0;j<=i;j++)
for (int k=0;k<=j*10;k++)
{
f[i][j][k]=f[i-1][j][k];
if (k>=a[i].y&&j) f[i][j][k]=min(f[i][j][k],f[i-1][j-1][k-a[i].y]+a[i].x/p[j]);
}
printf("%d\n",calc());
}
return 0;
//NOTICE LONG LONG!!!!!
}
剩下的先咕着。
原文:https://www.cnblogs.com/Gloid/p/10388719.html