首页 > 数据库技术 > 详细

数据结构(四)--- 红黑树(RedBlock-Tree)

时间:2019-02-16 22:43:57      阅读:233      评论:0      收藏:0      [点我收藏+]

  文章图片来自邓俊辉老师课件

       

        先提几个问题去思考学习本文 :

 

  • 红黑树和2-4树(B-Tree)很像,那么它存在的动机又是什么呢
  • 插入和删除操作的逻辑又是怎么样的,时间和空间复杂度可以达到怎么样
  • 和 AVL 对象有什么区别呢

 

概述

定义

         技术分享图片

        我们可以看到红黑树有4条重要的定义,这4条定义保证了这个平衡树。下面我们看一下它和B-Tree的联系。

技术分享图片

        从这个结构上说,我们可以知道B-Tree相比于红黑树,红黑树需要维护一个颜色这样的属性,需要空间,而同时红黑树搜索时可以

像二叉树一般查找,而B-Tree每一个超级节点需要维护多个关键码。这方面查看 RST_WIKI 这里的分析。

        但是这样的树是BBST吗?

技术分享图片

       上面的数学推算已经向我证明,平均的深度为 h = O(LogN)

 

动机

Persistant Structure 一致性

       下面介绍了红黑树为什么适应一致性结构。技术分享图片

技术分享图片

 

         时间和空间复杂度红黑树可以适应条件。同时拓扑结构上,无论是插入还是删除,都可以不超过O(1).技术分享图片

 

最坏情况下保证插入和删除,查找

        这里引用 wiki 上的一段话说明红黑树在这方面的表现。

 

      Red–black trees offer worst-case guarantees for insertion time, deletion time, and search time. Not only does this make them valuable in time-sensitive applications such as real-time applications, but it makes them valuable building blocks in other data structures which provide worst-case guarantees; for example, many data structures used in computational geometry can be based on red–black trees, and the Completely Fair Scheduler used in current Linux kernels and epoll system call implementation[19] uses red–black trees.

 

时间空间复杂度

 

技术分享图片

     出处见参考资料

插入原理解析

        我们定义插入的节点为红色,那么就有一种情况,双红,这违反了我们前面红黑树的定义,下面介绍如何解决双红问题。

RR-1

         第一种情况 u 节点(uncle节点)是黑色的。

技术分享图片

技术分享图片

         我们可以使用3+4实现,让树消除双红现象,3+4实现可以参考这篇文章 : 3+4          

 

RR-2

          u节点是红色的情况下,最终可能导致树高度+1

技术分享图片

技术分享图片技术分享图片

       

插入归纳

技术分享图片

删除原理解析

       我们思考一下,假如先不看颜色,那么二叉树的删除算法中,考察三种情况

  • 拥有其中一个子节点
  • 无子节点
  • 拥有左右子节点

       其中第一和第二种情况很好处理,直接删除即可,有其中一个子节点需要重新连接一下父节点。第三种需要找出继承节点,然后替

换掉删除节点。继承节点简单点解释就是右树中最小的一个。

       好了,那么此时我们再来思考一下颜色的问题,我们知道红黑树不能红红相联,且每个底部节点到根节点黑节点的数量都相等,要

是删除节点是上面第一种情况和第二种情况且删除节点是红节点,直接删除对树的平衡没有情况影响。

       那么要是删除节点和继承节点一黑一白呢,我们只需将删除后,将继承节点染黑就可以了,见下图。

技术分享图片

 

        那么删除节点和继承节点都是黑的情况呢?

双黑缺陷

技术分享图片

       可以看到,当删除节点和替代节点都为黑节点,删除会产生下溢(下溢的概念可以参考上篇B-树),需要考察继承节点的父节点p和

兄弟节点 s ,下面分四种情况处理 :

 

BB-1

技术分享图片

       a’ 和 b’ 都是B-Tree 的扑拓结构,可以看到当s拥有一个红节点时,产生下溢的节点通过旋转,向兄弟节点借来了一个节点,从而

达到了平衡。而从 a 到 b 的过程,需要借助的是3+4操作。

 

BB-2R

技术分享图片

       BB-2R的情况,就相当于B-Tree的合并,而我们看到最终的扑拓结构是不变的,只需要进行染色,那么当父节点被拿走了一个,是否会产生下溢呢?不会,因为在父节点中有红节点,那么左或右必有黑节点。

 

BB-2B

技术分享图片

       同样也是合并操作,此时不是像BB-2R一样是红色节点了,那么就有可能引发下沉下溢,那么是不是会像AVL一样进行LogN次的旋转操作呢?不会,从a到b,我们可以他们的扑拓结构没有改变,改变的只是颜色,所以不会发生LogN次的旋转。时间复杂度依旧是O(1).

 

BB-3

技术分享图片

       可以看到,经过了左旋或是右旋,还有变色,由a到b后,黑高度依旧异常,可以有一个好消息就是,经过旋转变成了我们之前处理

的情况一样,即 BB-1 或是 BB-2R ,不会是 BB-2B的原因是 x 有个新的兄弟节点 s’ ,而且 p 为红节点。

       至此,我们双黑的情况全部介绍完毕。

 

归纳总结和AVL的对比

技术分享图片

 

代码实现

         代码实现我们以java中的TreeMap 来解释。本文只会介绍删除操作。

 

   /**
     * Removes the mapping for this key from this TreeMap if present.
     *
     * @param  key key for which mapping should be removed
     * @return the previous value associated with {@code key}, or
     *         {@code null} if there was no mapping for {@code key}.
     *         (A {@code null} return can also indicate that the map
     *         previously associated {@code null} with {@code key}.)
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
    public V remove(Object key) {
        Entry<K,V> p = getEntry(key);
        if (p == null)
            return null;

        V oldValue = p.value;
        deleteEntry(p);
        return oldValue;
    }



   /**
     * Returns this map‘s entry for the given key, or {@code null} if the map
     * does not contain an entry for the key.
     *
     * @return this map‘s entry for the given key, or {@code null} if the map
     *         does not contain an entry for the key
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
    final Entry<K,V> getEntry(Object key) {
        // Offload comparator-based version for sake of performance
        if (comparator != null)
            return getEntryUsingComparator(key);
        if (key == null)
            throw new NullPointerException();
        @SuppressWarnings("unchecked")
            Comparable<? super K> k = (Comparable<? super K>) key;
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = k.compareTo(p.key);
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }



     /**
     * Delete node p, and then rebalance the tree.
     */
    private void deleteEntry(Entry<K,V> p) {
        modCount++;
        size--;

        // If strictly internal, copy successor‘s element to p and then make p
        // point to successor.
        if (p.left != null && p.right != null) {
            Entry<K,V> s = successor(p);
            p.key = s.key;
            p.value = s.value;
            p = s;
        } // p has 2 children


        //到了这里,无论p是有几个孩子,p这个变量变成了要删除的节点
        //要是 p有两个child,会进入上面那个if,p变为了继承节点
        // Start fixup at replacement node, if it exists.
        Entry<K,V> replacement = (p.left != null ? p.left : p.right);

        if (replacement != null) { //只存在一个子节点
            // Link replacement to parent  重新连接父节点,需要删除的节点置为 null 
            replacement.parent = p.parent;
            if (p.parent == null)
                root = replacement;
            else if (p == p.parent.left)
                p.parent.left  = replacement;
            else
                p.parent.right = replacement;

            // Null out links so they are OK to use by fixAfterDeletion.
            p.left = p.right = p.parent = null;

            // Fix replacement 开始修复,判断是不是黑节点是因为红节点直接删除没有影响 : 
            // 每个底部节点到根节点的黑色节点数量相等
            if (p.color == BLACK)
                fixAfterDeletion(replacement);
        } else if (p.parent == null) { // return if we are the only node. 该树只有一个节点
            root = null;
        } else { //  No children. Use self as phantom replacement and unlink.  没有子节点
            if (p.color == BLACK)         //继承节点为黑 
                fixAfterDeletion(p);

            if (p.parent != null) {       //继承节点为红,直接删除 
                if (p == p.parent.left)
                    p.parent.left = null;
                else if (p == p.parent.right)
                    p.parent.right = null;
                p.parent = null;
            }
        }
    }


    // 实际就是解决双黑节点的问题
    /** From CLR */
    private void fixAfterDeletion(Entry<K,V> x) {
        while (x != root && colorOf(x) == BLACK) { //非根且为黑节点
            if (x == leftOf(parentOf(x))) {        
                Entry<K,V> sib = rightOf(parentOf(x));  //取右兄弟节点

                if (colorOf(sib) == RED) {                 
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);
                    rotateLeft(parentOf(x));			  
                    sib = rightOf(parentOf(x));
                }                                          

                if (colorOf(leftOf(sib))  == BLACK &&      
                    colorOf(rightOf(sib)) == BLACK) {
                    setColor(sib, RED);
                    x = parentOf(x);
                } else {
                    if (colorOf(rightOf(sib)) == BLACK) {  
                        setColor(leftOf(sib), BLACK);
                        setColor(sib, RED);
                        rotateRight(sib);
                        sib = rightOf(parentOf(x));
                    }
                    setColor(sib, colorOf(parentOf(x)));   
                    setColor(parentOf(x), BLACK);
                    setColor(rightOf(sib), BLACK);
                    rotateLeft(parentOf(x));
                    x = root;
                }
            } else { // symmetric                        //和前面是对称的
                Entry<K,V> sib = leftOf(parentOf(x));    // x是左节点

                if (colorOf(sib) == RED) {               //假如是BB-3,旋转后只能是 BB-1 或者是 BB-2R
                    setColor(sib, BLACK);
                    setColor(parentOf(x), RED);
                    rotateRight(parentOf(x));
                    sib = leftOf(parentOf(x));
                }                                       

                if (colorOf(rightOf(sib)) == BLACK &&   //BB-2R 或是  BB-2B 
                    colorOf(leftOf(sib)) == BLACK) {
                    setColor(sib, RED);
                    x = parentOf(x);
                } else {
                    if (colorOf(leftOf(sib)) == BLACK) {  //BB-1 中 红在右边
                        setColor(rightOf(sib), BLACK);
                        setColor(sib, RED);
                        rotateLeft(sib);
                        sib = leftOf(parentOf(x));
                    }
                    setColor(sib, colorOf(parentOf(x)));
                    setColor(parentOf(x), BLACK);
                    setColor(leftOf(sib), BLACK);
                    rotateRight(parentOf(x));
                    x = root;                           //跳出while
                }
            }
        }

        setColor(x, BLACK);
    }

        

参考资料

  • 邓俊辉老师数据结构课程
  • RST_WIKI

数据结构(四)--- 红黑树(RedBlock-Tree)

原文:https://www.cnblogs.com/Benjious/p/10389338.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!