首页 > 其他 > 详细

AT2000 Leftmost Ball(计数dp+组合数学)

时间:2019-02-18 22:14:41      阅读:300      评论:0      收藏:0      [点我收藏+]

传送门

解题思路

  设\(f[i][j]\)表示填了\(i\)个白色,\(j\)种彩色的方案数,那么显然\(j<=i\)。考虑这个的转移,首先可以填一个白色,就是\(f[i][j]=f[i-1][j]*(n-i+1)\)。第二种情况是填一个彩色,这里有一点需要注意,不能直接用组合数,这样的话会有重复,我们可以强行安排一个顺序,这种颜色的第一个被变成了白色,第二个就直接跟在上一种彩色的后面,这样就可以做到不重不漏了,那么第二个转移就是\(f[i][j]=f[i][j-1]*C(n*k-(i+(j-1)*(k-1)),k-2)\)

代码

#include<bits/stdc++.h>

using namespace std;
typedef long long LL;
const int N=2005;
const int MOD=1e9+7;

int n,k,f[N][N],fac[N*N],inv[N*N];

inline int fast_pow(int x,int y){
    int ret=1;
    for(;y;y>>=1){
        if(y&1) ret=(LL)ret*x%MOD;
        x=(LL)x*x%MOD;
    }   
    return ret;
}

inline int C(int x,int y){
    return 1ll*fac[x]*inv[y]%MOD*inv[x-y]%MOD;  
}

int main(){
    scanf("%d%d",&n,&k); if(k==1) {puts("1"); return 0;}
    f[0][0]=1; fac[0]=1;
    for(int i=1;i<=n*k;i++) fac[i]=1ll*fac[i-1]*i%MOD;
    inv[n*k]=fast_pow(fac[n*k],MOD-2);
    for(int i=n*k-1;~i;i--) inv[i]=1ll*inv[i+1]*(i+1)%MOD;
    for(int i=1;i<=n;i++)
        for(int j=0;j<=i;j++){
            if(j!=i) f[i][j]=1ll*f[i-1][j]*(n-i+1)%MOD;
            if(j!=0) (f[i][j]+=1ll*f[i][j-1]*C(n*k-(i+(j-1)*(k-1))-1,k-2)%MOD)%=MOD;
        }
    printf("%d\n",f[n][n]);
    return 0;
}   

AT2000 Leftmost Ball(计数dp+组合数学)

原文:https://www.cnblogs.com/sdfzsyq/p/10398231.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!