首页 > 编程语言 > 详细

OpenCV3 for python3 学习笔记3-----用OpenCV3处理图像2

时间:2019-02-20 11:52:19      阅读:199      评论:0      收藏:0      [点我收藏+]

  3.5、Canny边缘检测

    OpenCV提供了Canny边缘检测函数来识别边缘。它有5个步骤:使用高斯滤波器对图像进行去噪、计算梯度、在边缘上使用最大抑制(NMS)、在检测到的边缘上使用双阀值去除

  假阳性(false positive),最后还会分析出所有的边缘及其之间的连接,以保留真正的边缘并消除不明显的边缘。

import cv2
import numpy as np

img = cv2.imread("flower.jpg")
cv2.imwrite("canny.jpg", cv2.Canny(img, 200, 300))
cv2.imshow("image", img)
cv2.imshow("canny", cv2.imread("canny.jpg"))
cv2.waitKey()
cv2.destroyAllWindows()

    运行效果:

    技术分享图片

  3.6、轮廓检测

    在计算机视觉中,轮廓检测是另一个比较重要的任务,不单是用来检测图像或视频中物体的轮廓,而且还有其他操作与轮廓检测有关。这些操作有:计算多边形边界、

  形状逼近和计算感兴趣区域。这是与图像数据交互时的简单操作,因为NumPy中的矩形区域可以使用数组切片(slice)来定义。在介绍物体检测(包括人脸)和物体跟踪的概念时会大量使用这种技术。

 

OpenCV3 for python3 学习笔记3-----用OpenCV3处理图像2

原文:https://www.cnblogs.com/shaosks/p/10405474.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!