//(2^n-1)%mod //费马小定理:a^n ≡ a^(n%(m-1)) * a^(m-1)≡ a^(n%(m-1)) (mod m) # include <stdio.h> # include <algorithm> # include <string.h> # define mod 1000000007 using namespace std; __int64 pow(__int64 n) { __int64 p=1,q=2; while(n) { if(n%2) { p=p*q%mod; } n/=2; q=q*q%mod; } return p; } char str[1000100]; int main() { __int64 i,n,len; while(~scanf("%s",str)) { len=strlen(str); n=0; for(i=0;i<len;i++) { n=(n*10+str[i]-'0')%(mod-1); } printf("%I64d\n",pow(n-1)); } return 0; }
hdu 4704 Sum (费马小定理+快速幂),布布扣,bubuko.com
原文:http://blog.csdn.net/lp_opai/article/details/38390681