一、分析背景:
1,为什么要选择虎嗅
「关于虎嗅」虎嗅网创办于 2012 年 5 月,是一个聚合优质创新信息与人群的新媒体平台。
2,分析内容
3,分析工具:
python3.6
scrapy
MongoDB
Matplotlib
WordCloud
Jieba
数据抓取
使用scrapy抓取了虎嗅网的主页文章,文章抓取时间为2012年建站至2018年12月7日共计约5 万篇文章。抓取 了 7 个字段信息:文章标题、作者、发文时间、评论数、收藏数、摘要,文章链接和文章内容。
1.目标网站分析
这是要爬取的 网页界面,可以看到是通过 AJAX 加载的。
F12打开开发者工具,可以看到 URL 请求是 POST 类型,下拉到底部查看 Form Data,表单需提交参数只有 3 项。经尝试, 只提交 page 参数就能成功获取页面的信息,其他两项参数无关紧要,所以构造分页爬取非常简单。
接着,切换选项卡到 Preview 和 Response 查看网页内容,可以看到数据都位于 data 字段里。total_page 为 2119,表示一共有 2119 页的文章内容,每一页有 25 篇文章,总共约 5 万篇,也就是我们要爬取的数量。
Scrapy介绍
Scrapy 是用纯 Python 实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛。框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。Scrapy 使用了 Twisted[‘tw?st?d](其主要对手是 Tornado)异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活的完成各种需求。
scrapy是如何帮助我们抓取数据的呢?
scrapy框架的工作流程:
1.首先Spiders(爬虫)将需要发送请求的url(requests)经ScrapyEngine(引擎)交给Scheduler(调度器)。
2.Scheduler(排序,入队)处理后,经ScrapyEngine,DownloaderMiddlewares(可选,主要有User_Agent, Proxy代理)交给Downloader。
3.Downloader向互联网发送请求,并接收下载响应(response)。将响应(response)经ScrapyEngine,SpiderMiddlewares(可选)交给Spiders。
4.Spiders处理response,提取数据并将数据经ScrapyEngine交给ItemPipeline保存(可以是本地,可以是数据库)。
5. 提取url重新经ScrapyEngine交给Scheduler进行下一个循环。直到无Url请求程序停止结束。
抓取数据
创建项目
scrapy startproject 项目名
scrapy genspider 爬虫名 网址
1 # -*- coding: utf-8 -*- 2 # from scrapy.spider import CrawlSpider 3 from selenium import webdriver 4 import time 5 from scrapy.linkextractors import LinkExtractor 6 from scrapy.spiders import CrawlSpider, Rule 7 # import json 8 from datetime import datetime 9 from ..items import HuxiuItem 10 from scrapy.http import FormRequest 11 import scrapy 12 import json,re 13 class HuxiuV1Spider(scrapy.Spider): 14 name = ‘huxiu_v1‘ 15 allowed_domains = [‘huxiu.com‘] 16 headers={ 17 ‘Referer‘: ‘https://www.huxiu.com/index.php/‘, 18 ‘User-Agent‘: ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36‘ 19 } 20 #post 21 #Form data 22 # page: 2 23 def start_requests(self): 24 url=‘https://www.huxiu.com/v2_action/article_list‘ 25 requests=[] 26 for i in range(2,2119): 27 formdata={ 28 ‘page‘:str(i) 29 } 30 request=FormRequest(url,callback=self.parse,formdata=formdata,headers=self.headers) 31 requests.append(request) 32 return requests 33 def parse(self, response): 34 js=json.loads(response.body.decode()) 35 # print(js) 36 req = str(js) 37 idd = re.findall(r‘data-aid="(.*?)">‘, req)#未处理的url(id) 38 title = re.findall(r‘class="transition msubstr-row2" target="_blank">(.*?)</a></h2>‘, req)#标题 39 auth = re.findall(r‘class="author-name">(.*?)</span>‘, req)#作者 40 pinglun = re.findall(r‘<i class="icon icon-cmt"></i><em>(.*?)</em>‘, req)#评论 41 shoucang = re.findall(r‘<i class="icon icon-fvr"></i><em>(.*?)</em>‘, req)#收藏 42 zhaiyao = re.findall(r‘<div class="mob-sub">(.*?)</div>‘, req)#未处理的摘要 43 digect = []#摘要 44 for i in zhaiyao: 45 s = i[34:-12] 46 if ‘span‘ in i: 47 s = i[104:-12] 48 digect.append(s) 49 # print(digect) 50 # print(title) 51 detail_url=[] 52 for i in idd: 53 burl = ‘https://www.huxiu.com/article/{}.html‘.format(i) 54 detail_url.append(burl) 55 # print(detail_url) 56 for i in range(len(idd)): 57 item=HuxiuItem() 58 item[‘title‘]=title[i] 59 item["auth"]=auth[i] 60 item[‘detail_url‘]=detail_url[i] 61 item[‘pinglun‘]=pinglun[i] 62 item[‘shoucang‘]=shoucang[i] 63 item[‘zhaiyao‘]=digect[i] 64 print(detail_url[i]) 65 # yield item 66 yield scrapy.Request(url=detail_url[i],meta={‘meta1‘:item},callback=self.pasre_item) 67 def pasre_item(self,response): 68 meta1=response.meta[‘meta1‘] 69 # print(‘hello‘) 70 time=response.xpath(‘//span[@class="article-time pull-left"]/text()|//span[@class="article-time"]/text()‘).extract() 71 content=response.xpath(‘//div[@class="article-content-wrap"]/p/text()|//div[@class="article-content-wrap"]/div/text()|//div[@class="article-content-wrap"]/div/span/text()‘).extract() 72 print(time) 73 ssss=‘‘ 74 for i in content: 75 ssss+=i 76 # num = response.xpath(‘//div[@class="author-article-pl"]/ul/li/a/text()‘) 77 # wnums=‘‘ 78 # for i in num: 79 # wnums = i[:-3] 80 # print(wnums) 81 for i in range(len(time)): 82 item = HuxiuItem() 83 item[‘title‘]=meta1[‘title‘] 84 item[‘auth‘]=meta1[‘auth‘] 85 item[‘detail_url‘]=meta1[‘detail_url‘] 86 item[‘pinglun‘]=meta1[‘pinglun‘] 87 item[‘shoucang‘]=meta1[‘shoucang‘] 88 item[‘zhaiyao‘]=meta1[‘zhaiyao‘] 89 item[‘time‘]=time[i] 90 # item[‘wnums‘]=num 91 item[‘content‘]=ssss 92 93 yield item
1 # -*- coding: utf-8 -*- 2 3 # Define here the models for your scraped items 4 # 5 # See documentation in: 6 # https://doc.scrapy.org/en/latest/topics/items.html 7 8 import scrapy 9 10 11 class HuxiuItem(scrapy.Item): 12 # define the fields for your item here like: 13 # name = scrapy.Field() 14 title = scrapy.Field() 15 auth = scrapy.Field() 16 detail_url = scrapy.Field() 17 pinglun = scrapy.Field() 18 shoucang = scrapy.Field() 19 zhaiyao = scrapy.Field() 20 time = scrapy.Field() 21 content=scrapy.Field() 22 # wnums=scrapy.Field()
1 # -*- coding: utf-8 -*- 2 3 # Define here the models for your scraped items 4 # 5 # See documentation in: 6 # https://doc.scrapy.org/en/latest/topics/items.html 7 8 import scrapy 9 10 11 class HuxiuItem(scrapy.Item): 12 # define the fields for your item here like: 13 # name = scrapy.Field() 14 title = scrapy.Field() 15 auth = scrapy.Field() 16 detail_url = scrapy.Field() 17 pinglun = scrapy.Field() 18 shoucang = scrapy.Field() 19 zhaiyao = scrapy.Field() 20 time = scrapy.Field() 21 content=scrapy.Field() 22 # wnums=scrapy.Field()
1 BOT_NAME = ‘huxiu‘ 2 3 SPIDER_MODULES = [‘huxiu.spiders‘] 4 NEWSPIDER_MODULE = ‘huxiu.spiders‘ 5 6 7 # Crawl responsibly by identifying yourself (and your website) on the user-agent 8 #USER_AGENT = ‘huxiu (+http://www.yourdomain.com)‘ 9 USER_AGENT = ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36‘ 10 11 # Obey robots.txt rules 12 ROBOTSTXT_OBEY = False 13 14 ITEM_PIPELINES = { 15 ‘huxiu.pipelines.HuxiuPipeline‘: 300, 16 } 17 18 LOG_FILE=‘huxiu_v1.log‘ 19 LOG_ENABLED=True #默认启用日志 20 LOG_ENCODING=‘UTF-8‘#日志的编码,默认为’utf-8‘ 21 LOG_LEVEL=‘DEBUG‘#日志等级:ERROR\WARNING\INFO\DEBUG 22 23 setting
以上,就完成了数据的获取。有了数据我们就可以着手分析,不过这之前还需简单地进行一下数据的清洗、处理。
原文:https://www.cnblogs.com/zxg-1997/p/10405872.html