首页 > 编程语言 > 详细

算法模型的评估

时间:2019-02-23 00:12:15      阅读:151      评论:0      收藏:0      [点我收藏+]

一般对于算法模型的评估量有很多,常用到的是精确率和真正率(召回率)以及ROC曲线和PR曲线,之前也有提到,今天查找了一些资料对着四个评估量进行一个小总结。

  1、首先是对一些概念的理解

TP  真正  是指预测为正样本,实际也是正样本的特征数

FP  假正  是预测为为正样本,实际为负样本的特征数

TN  真负 是预测为为负样本,实际也是负样本的特征数

FN  假正  是预测为负样本,实际为正样本的特征数

  2、公式

真正率=TP/(TP+FN)     正确的被判断正的概率

准确率=TP/(TP+FP)     预测为正的样本中,实际为正的概率

负正率=FP/(FP+TN)

真负率=TN/(TN+FP)=1-真正率  错误的预测为负的概率  

  3、ROC曲线PR曲线

ROC曲线是以负正率为X轴,以真正率为Y轴得到的曲线,当真正率越高,负正率越低,这个模型或者算法就更有效。在图上显示的位曲线越靠近左上方效果越好,即曲线下方的面积越大,模型越好。

PR曲线是以真正率为X轴,以准确率为Y轴得到的曲线,当准确率越高,真正率越高,其模型和算法越有效。在图上显示为曲线越靠近右上方越好,即曲线下方面积越大,模型越好。

 

算法模型的评估

原文:https://www.cnblogs.com/RR-99/p/10421302.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!