首页 > 其他 > 详细

keras字符编码

时间:2019-02-23 15:17:55      阅读:293      评论:0      收藏:0      [点我收藏+]
#-*-coding:utf-8-*-
# import numpy as np
#
# samples = [‘The cat sat on the mat.‘, ‘The dog ate my homework.‘]
#
# # 10
# # 定义一个集合,得到{‘The‘: 1, ‘cat‘: 2, ‘sat‘: 3, ‘on‘: 4, ‘the‘: 5, ‘mat.‘: 6, ‘dog‘: 7, ‘ate‘: 8, ‘my‘: 9, ‘homework.‘: 10},也就是筛选出这个句子中对应的了哪些词,然后并赋予索引值,其实就是个词库
# token_index = {}
# for sample in samples:
# for word in sample.split():
# if word not in token_index:
# token_index[word] = len(token_index) + 1
#
# # 限制了读取的句子的长度,一句话最长10个词
# print(token_index)
# max_length = 10
# results = np.zeros(shape=(len(samples),
# max_length,
# max(token_index.values()) + 1))
#
# # print(results) 2, 10, 11
# for i, sample in enumerate(samples):
# for j, word in list(enumerate(sample.split()))[:max_length]:
# index = token_index.get(word)
# results[i, j, index] = 1.
# print(results)

import numpy as np
import string
samples = [‘The cat sat on the mat.‘, ‘The dog ate my homework.‘]
# 预先定义一个字符集 ‘0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\\‘()*+,-./:;<=>?@[\\]^_`{|}~‘
characters = string.printable
token_index = dict(zip(range(1, len(characters) + 1), characters))

max_length = 50
results = np.zeros((len(samples), max_length, max(token_index.keys()) + 1))
for i, sample in enumerate(samples):
for j, character in enumerate(sample):
for key, value in token_index.items():
if value == character:
index = key
results[i, j, index] = 1.


print(results)

keras字符编码

原文:https://www.cnblogs.com/shuimuqingyang/p/10422725.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!