首页 > 其他 > 详细

NgDL:【第二周】NN基础

时间:2019-02-24 12:47:55      阅读:163      评论:0      收藏:0      [点我收藏+]

1.计算图的导数计算

技术分享图片

正向比如说是计算代价函数值,反向就是增大多少a/b/c对J的影响,也就是导数的意义,这里讲的是求导链式法则。

2.向量化 节约大量计算时间

技术分享图片

简直是100倍的时间,看来之前实现的那个代码根本就不能用好几层for循环来实现,时间太长了啦!第一次知道。

3.Py中的广播

技术分享图片

使用对列求和,并/原来的矩阵,b将会被复制3份。

 技术分享图片

第一个对100复制为一个行向量,第二个复制为矩阵。

4.numpy中的向量

技术分享图片

对于第一行,不建议使用,因为a是一个(5,)的数组,而是应该声明为矩阵,1*n或者n*1,是行向量或者列向量,或者使用reshape。

可以使用assert来随时声明矩阵的维度。

NgDL:【第二周】NN基础

原文:https://www.cnblogs.com/BlueBlueSea/p/10425819.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!