法1:通项公式法,由\((2x-y)^5\)展开式的通项公式:\(T_{r+1}=C_5^r\cdot (2x)^{5-r}\cdot (-y)^r\)可得:
当\(r=3\)时,\(x(2x-y)^5\)展开式中\(x^3y^3\)的系数为\(C_5^3\times 2^2\times (-1)^3=-40\);
当\(r=2\)时,\(x(2x-y)^5\)展开式中\(x^3y^3\)的系数为\(C_5^2\times 2^3\times (-1)^2=-40\);
则\(x^3y^3\)的系数为\(80-40=40\),故选\(C\)。
法2:排列组合法,构成\(x^3y^3\)的有两个来源:
其一,\(C_1^1\cdot x\cdot C_5^2\cdot (2x)^2\cdot C_3^3\cdot (-y)^3=-40x^3y^3\);
其二,\(C_1^1\cdot y\cdot C_5^3\cdot (2x)^3\cdot C_2^2\cdot (-y)^2=80x^3y^3\);
则\(x^3y^3\)的系数为\(80-40=40\),故选\(C\)。
原文:https://www.cnblogs.com/wanghai0666/p/10429916.html