可以理解为字面意思:Run 表示运行,Loop 表示循环。结合在一起就是运行的循环的意思。哈哈,我更愿意翻译为『跑圈』。直观理解就像是不停的跑圈。
RunLoop 和线程是息息相关的,我们知道线程的作用是用来执行特定的一个或多个任务,在默认情况下,线程执行完之后就会退出,就不能再执行任务了。这时我们就需要采用一种方式来让线程能够不断地处理任务,并不退出。所以,我们就有了 RunLoop。
我们在启动一个iOS程序的时候,系统会调用创建项目时自动生成的 main.m 的文件。main.m文件如下所示:
int main(int argc, char * argv[]) { @autoreleasepool { return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class])); } }
其中 UIApplicationMain
函数内部帮我们开启了主线程的 RunLoop,UIApplicationMain
内部拥有一个无限循环的代码,只要程序不退出/崩溃,它就一直循环。上边的代码中主线程开启 RunLoop 的过程可以简单的理解为如下代码:
int main(int argc, char * argv[]) { BOOL running = YES; do { // 执行各种任务,处理各种事件 // ...... } while (running); // 判断是否需要退出 return 0; }
从上边可看出,程序一直在 do-while 循环中执行,所以 UIApplicationMain
函数一直没有返回,我们在运行程序之后程序不会马上退出,会保持持续运行状态。
下图是苹果官方给出的 RunLoop 模型图。
从上图中可以看出,RunLoop 就是线程中的一个循环,RunLoop 会在循环中会不断检测,通过 Input sources(输入源)和 Timer sources(定时源)两种来源等待接受事件;然后对接受到的事件通知线程进行处理,并在没有事件的时候让线程进行休息。
下面我们来了解一下Core Foundation框架下关于 RunLoop 的 5 个类,只有弄懂这几个类的含义,我们才能深入了解 RunLoop 的运行机制。
下边详细讲解下几种类的具体含义和关系。
先来看一张表示这 5 个类的关系图帮助理解(来源:http://blog.ibireme.com/2015/05/18/runloop/)。
接着来讲解这 5 个类的相互关系:
一个RunLoop对象(CFRunLoopRef)中包含若干个运行模式(CFRunLoopModeRef)。而每一个运行模式下又包含若干个输入源(CFRunLoopSourceRef)、定时源(CFRunLoopTimerRef)、观察者(CFRunLoopObserverRef)。
下边我们来详细讲解下这五个类:
CFRunLoopRef 是 Core Foundation 框架下 RunLoop 对象类。我们可通过以下方式来获取 RunLoop 对象:
CFRunLoopGetCurrent(); // 获得当前线程的 RunLoop 对象
CFRunLoopGetMain(); // 获得主线程的 RunLoop 对象
当然,在Foundation 框架下获取 RunLoop 对象类的方法如下:
[NSRunLoop currentRunLoop]; // 获得当前线程的 RunLoop 对象
[NSRunLoop mainRunLoop]; // 获得主线程的 RunLoop 对象
系统默认定义了多种运行模式(CFRunLoopModeRef),如下:
其中kCFRunLoopDefaultMode、UITrackingRunLoopMode、kCFRunLoopCommonModes是我们开发中需要用到的模式,具体使用方法我们在 2.3 CFRunLoopTimerRef 中结合CFRunLoopTimerRef来演示说明。
CFRunLoopTimerRef是定时源(RunLoop模型图中提到过),理解为基于时间的触发器,基本上就是NSTimer(哈哈,这个理解就简单了吧)。
下面我们来演示下CFRunLoopModeRef和CFRunLoopTimerRef结合的使用用法,从而加深理解。
[self ShowDemo1];
来演示。- (void)viewDidLoad { [super viewDidLoad]; // 定义一个定时器,约定两秒之后调用self的run方法 NSTimer *timer = [NSTimer timerWithTimeInterval:2.0 target:self selector:@selector(run) userInfo:nil repeats:YES]; // 将定时器添加到当前RunLoop的NSDefaultRunLoopMode下 [[NSRunLoop currentRunLoop] addTimer:timer forMode:NSDefaultRunLoopMode]; } - (void)run { NSLog(@"---run"); }
然后运行,这时候我们发现如果我们不对模拟器进行任何操作的话,定时器会稳定的每隔2秒调用run方法打印。
但是当我们拖动Text View滚动时,我们发现:run方法不打印了,也就是说NSTimer不工作了。而当我们松开鼠标的时候,NSTimer就又开始正常工作了。
这是因为:
你可以试着将上述代码中的[[NSRunLoop currentRunLoop] addTimer:timer forMode:NSDefaultRunLoopMode];
语句换为[[NSRunLoop currentRunLoop] addTimer:timer forMode:UITrackingRunLoopMode];
,也就是将定时器添加到当前RunLoop的UITrackingRunLoopMode下,你就会发现定时器只会在拖动Text View的模式下工作,而不做操作的时候定时器就不工作。
那难道我们就不能在这两种模式下让NSTimer都能正常工作吗?
当然可以,这就用到了我们之前说过的伪模式(kCFRunLoopCommonModes),这其实不是一种真实的模式,而是一种标记模式,意思就是可以在打上Common Modes标记的模式下运行。
那么哪些模式被标记上了Common Modes呢?
NSDefaultRunLoopMode 和 UITrackingRunLoopMode。
所以我们只要我们将NSTimer添加到当前RunLoop的kCFRunLoopCommonModes(Foundation框架下为NSRunLoopCommonModes)下,我们就可以让NSTimer在不做操作和拖动Text View两种情况下愉快的正常工作了。
具体做法就是讲添加语句改为[[NSRunLoop currentRunLoop] addTimer:timer forMode:NSRunLoopCommonModes];
既然讲到了NSTimer,这里顺便讲下NSTimer中的scheduledTimerWithTimeInterval
方法和RunLoop的关系。添加下面的代码:
[NSTimer scheduledTimerWithTimeInterval:2.0 target:self selector:@selector(run) userInfo:nil repeats:YES];
这句代码调用了scheduledTimer返回的定时器,NSTimer会自动被加入到了RunLoop的NSDefaultRunLoopMode模式下。这句代码相当于下面两句代码:
NSTimer *timer = [NSTimer timerWithTimeInterval:2.0 target:self selector:@selector(run) userInfo:nil repeats:YES]; [[NSRunLoop currentRunLoop] addTimer:timer forMode:NSDefaultRunLoopMode];
CFRunLoopSourceRef是事件源(RunLoop模型图中提到过),CFRunLoopSourceRef有两种分类方法。
这两种分类方式其实没有区别,只不过第一种是通过官方理论来分类,第二种是在实际应用中通过调用函数来分类。
下边我们举个例子大致来了解一下函数调用栈和Source。
所以点击事件是这样来的:
首先程序启动,调用16行的main函数,main函数调用15行UIApplicationMain函数,然后一直往上调用函数,最终调用到0行的BtnClick函数,即点击函数。
同时我们可以看到11行中有Sources0,也就是说我们点击事件是属于Sources0函数的,点击事件就是在Sources0中处理的。
而至于Sources1,则是用来接收、分发系统事件,然后再分发到Sources0中处理的。
CFRunLoopObserverRef是观察者,用来监听RunLoop的状态改变
CFRunLoopObserverRef可以监听的状态改变有以下几种:
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) { kCFRunLoopEntry = (1UL << 0), // 即将进入Loop:1 kCFRunLoopBeforeTimers = (1UL << 1), // 即将处理Timer:2 kCFRunLoopBeforeSources = (1UL << 2), // 即将处理Source:4 kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠:32 kCFRunLoopAfterWaiting = (1UL << 6), // 即将从休眠中唤醒:64 kCFRunLoopExit = (1UL << 7), // 即将从Loop中退出:128 kCFRunLoopAllActivities = 0x0FFFFFFFU // 监听全部状态改变 };
下边我们通过代码来监听下RunLoop中的状态改变。
[self showDemo2];
方法。- (void)viewDidLoad { [super viewDidLoad]; // 创建观察者 CFRunLoopObserverRef observer = CFRunLoopObserverCreateWithHandler(CFAllocatorGetDefault(), kCFRunLoopAllActivities, YES, 0, ^(CFRunLoopObserverRef observer, CFRunLoopActivity activity) { NSLog(@"监听到RunLoop发生改变---%zd",activity); }); // 添加观察者到当前RunLoop中 CFRunLoopAddObserver(CFRunLoopGetCurrent(), observer, kCFRunLoopDefaultMode); // 释放observer,最后添加完需要释放掉 CFRelease(observer); }
可以看到RunLoop的状态在不断的改变,最终变成了状态 32,也就是即将进入睡眠状态,说明RunLoop之后就会进入睡眠状态。
好了,五个类都讲解完了,下边开始放大招了。这下我们就可以来理解RunLoop的运行逻辑了。
下边上一张之前提到的文章中博主提供的运行逻辑图(来源:http://blog.ibireme.com/2015/05/18/runloop/)
这张图对于我们理解RunLoop来说太有帮助了,下边我们可以来说下官方文档给我们的RunLoop逻辑。
在每次运行开启RunLoop的时候,所在线程的RunLoop会自动处理之前未处理的事件,并且通知相关的观察者。
具体的顺序如下:
哈哈,讲了这么多云里雾里的原理知识,下边终于到了实战应用环节。
光弄懂是没啥用的,能够实战应用才是硬道理。下面讲解一下RunLoop的几种应用。
NSTimer的使用方法在讲解CFRunLoopTimerRef
类的时候详细讲解过,具体参考上边 2.3 CFRunLoopTimerRef。
有时候,我们会遇到这种情况:
当界面中含有UITableView,而且每个UITableViewCell里边都有图片。这时候当我们滚动UITableView的时候,如果有一堆的图片需要显示,那么可能会出现卡顿的现象。
怎么解决这个问题呢?
这时候,我们应该推迟图片的显示,也就是ImageView推迟显示图片。有两种方法:
因为UITableView继承自UIScrollView,所以我们可以通过监听UIScrollView的滚动,实现UIScrollView相关delegate即可。
利用performSelector
方法为UIImageView调用setImage:
方法,并利用inModes
将其设置为RunLoop下NSDefaultRunLoopMode运行模式。代码如下:
[self.imageView performSelector:@selector(setImage:) withObject:[UIImage imageNamed:@"tupian"] afterDelay:4.0 inModes:NSDefaultRunLoopMode];
下边利用Demo演示一下该方法。
touchesBegan
方法中添加下面的代码,在Demo中请在touchesBegan
中调用[self showDemo3];
方法。- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event { [self.imageView performSelector:@selector(setImage:) withObject:[UIImage imageNamed:@"tupian"] afterDelay:4.0 inModes:@[NSDefaultRunLoopMode]]; }
这样我们就实现了在拖动完之后,在延迟显示UIImageView。
我们在开发应用程序的过程中,如果后台操作特别频繁,经常会在子线程做一些耗时操作(下载文件、后台播放音乐等),我们最好能让这条线程永远常驻内存。
那么怎么做呢?
添加一条用于常驻内存的强引用的子线程,在该线程的RunLoop下添加一个Sources,开启RunLoop。
具体实现过程如下:
[self showDemo4];
方法。- (void)viewDidLoad { [super viewDidLoad]; // 创建线程,并调用run1方法执行任务 self.thread = [[NSThread alloc] initWithTarget:self selector:@selector(run1) object:nil]; // 开启线程 [self.thread start]; } - (void) run1 { // 这里写任务 NSLog(@"----run1-----"); // 添加下边两句代码,就可以开启RunLoop,之后self.thread就变成了常驻线程,可随时添加任务,并交于RunLoop处理 [[NSRunLoop currentRunLoop] addPort:[NSPort port] forMode:NSDefaultRunLoopMode]; [[NSRunLoop currentRunLoop] run]; // 测试是否开启了RunLoop,如果开启RunLoop,则来不了这里,因为RunLoop开启了循环。 NSLog(@"未开启RunLoop"); }
这时,我们就开启了一条常驻线程,下边我们来试着添加其他任务,除了之前创建的时候调用了run1方法,我们另外在点击的时候调用run2方法。
那么,我们在touchesBegan中调用PerformSelector,从而实现在点击屏幕的时候调用run2方法。Demo地址。具体代码如下:
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event { // 利用performSelector,在self.thread的线程中调用run2方法执行任务 [self performSelector:@selector(run2) onThread:self.thread withObject:nil waitUntilDone:NO]; } - (void) run2 { NSLog(@"----run2------"); }
经过运行测试,除了之前打印的----run1-----,每当我们点击屏幕,都能调用----run2------。
这样我们就实现了常驻线程的需求。
iOS多线程详尽总结系列文章:
作者:行走少年郎
原文:https://www.cnblogs.com/jiuyi/p/10432894.html