首页 > 其他 > 详细

CodeForces - 441E:Valera and Number (DP&数学期望&二进制)

时间:2019-02-25 20:41:17      阅读:195      评论:0      收藏:0      [点我收藏+]

Valera is a coder. Recently he wrote a funny program. The pseudo code for this program is given below:


//input: integers x, k, p
a = x;
for(step = 1; step <= k; step = step + 1){
rnd = [random integer from 1 to 100];
if(rnd <= p)
a = a * 2;
else
a = a + 1;
}

s = 0;

while(remainder after dividing a by 2 equals 0){
a = a / 2;
s = s + 1;
}

Now Valera wonders: given the values x, k and p, what is the expected value of the resulting number s?


Input

The first line of the input contains three integers x, k, p (1 ≤ x ≤ 109; 1 ≤ k ≤ 200; 0 ≤ p ≤ 100).

Output

Print the required expected value. Your answer will be considered correct if the absolute or relative error doesn‘t exceed 10 - 6.

Examples
Input
1 1 50
Output
1.0000000000000
Input
5 3 0
Output
3.0000000000000
Input
5 3 25
Output
1.9218750000000

题意:给定X,现在进行K轮操作,每一轮有P%的概率加倍,(100-P)%的概率加一,问K轮之后的X的因子2的次数。

思路:首先一个数X中2的因子个数=转化为二进制后末尾0的个数=__builtin_ctz(X);题解给的四维DP比较麻烦,这里有一种比较难以想到,但是不难理解的二维DP。

           用dp[i][j],表示X+j进行i轮操作后的因子2的幂。 那么答案就是dp[K][0];

那么转移就是:

            dp[i][j]+=(dp[i-1][j+1])*(1.0-P);   即第一次操作为+1;
            dp[i][j<<1]+=(dp[i-1][j]+1)*P;  即第一次操作为*2;

虽然乘法的话第二维会加倍增长,但加法的话第二维会减小1,所以最小影响到dp[K][0]的最大第二维就是K,而不用维护所有的dp[][j],即j<=K;

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std; //*2 P
double dp[210][410],P;
int main()
{
    int X,K;
    scanf("%d%d%lf",&X,&K,&P); P/=100.0;
    rep(i,0,K) dp[0][i]=__builtin_ctz(X+i);
    rep(i,1,K){
        rep(j,0,K){
            dp[i][j]+=(dp[i-1][j+1])*(1.0-P);
            dp[i][j<<1]+=(dp[i-1][j]+1)*P;
        }
    }
    printf("%.10lf\n",dp[K][0]);
    return 0;
}

 

CodeForces - 441E:Valera and Number (DP&数学期望&二进制)

原文:https://www.cnblogs.com/hua-dong/p/10432965.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!