有一个定理:Erd?s–Gallai定理。
然后观察样例,可以猜到答案必定是奇偶性相同的一段区间,那么二分左右端点即可。
定理和这个猜测暂时都懒得学/证,留坑。
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 505005
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
inline void print(register int x)
{
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n;
int aa[sz],a[sz];
ll s[sz];
int check(int w) // return value : 0:ok;1:big;-1:small
{
int n=::n+1,t=1;
rep(i,1,n-1) a[i]=aa[i];a[n]=w;
drep(i,n,2)
if (a[i-1]<=a[i]) swap(a[i-1],a[i]);
else {t=i;break;}
drep(i,n,1) s[i]=s[i+1]+a[i];
int p=n+1;
rep(k,1,n)
{
while (p>1&&a[p-1]<=k) --p;
ll S;
if (p<=k+1) S=1ll*k*(k-1)+s[k+1];
else S=1ll*k*(k-1)+s[p]+1ll*k*(p-1-(k+1)+1);
if (s[1]-s[k+1]<=S) continue;
return p>t?1:-1;
}
return 0;
}
int main()
{
file();
int s=0;
read(n);
rep(i,1,n) read(aa[i]),s+=(aa[i]&1);
sort(aa+1,aa+n+1);reverse(aa+1,aa+n+1);
s&=1;
int l,r,L=-1,R=-1;
l=0,r=n/2;
while (l<=r)
{
int mid=(l+r)>>1;
if (check(mid*2+s)>=0) L=mid*2+s,r=mid-1;
else l=mid+1;
}
l=0,r=n/2;
while (l<=r)
{
int mid=(l+r)>>1;
if (check(mid*2+s)<=0) R=mid*2+s,l=mid+1;
else r=mid-1;
}
if (L==-1||R==-1||L>R) puts("-1");
else for (int i=L;i<=R;i+=2) printf("%d ",i);
return 0;
}
Codeforces 1091E New Year and the Acquaintance Estimation [图论]
原文:https://www.cnblogs.com/p-b-p-b/p/10440482.html