首页 > 其他 > 详细

【LuoguP3329&4123】[ZJOI2011]最小割&[CQOI2016]不同的最小割

时间:2019-02-27 15:35:12      阅读:158      评论:0      收藏:0      [点我收藏+]

链接1
链接2

题意简述

第一个题 : 问图中有多少不同的最小割数值
第二个题 : \(q\) 次询问图中多少对点对之间的最小割小于 \(x\)

Sol

两个都是模板题就放一起了。

求完最小割树直接暴力 \(O(n^2)\) 弄出所有点对间最小割 , 然后该干嘛干嘛。


最小割树的构建:

\(Gemory-Hu\; Tree\)算法

对于一个 \(n\) 个节点的图 , 图中所有点对不同的最小割数目最多只有 \(n-1\) 个 , 可以证明存在一棵树 , 使得两点在这棵树上的最小割即为原图中的最小割 。
考虑3个点两两之间的最小割 \(C_{u,v},C_{u,t},C_{v,t}\) , 我们已知 \(C_{u,t},C_{v,t}\) , 假设在\(C_{u,v}\)中 ,不妨假设 \(t\) 被分在了与 \(v\) 在一起的割集 。由于在一个割中一个点一定被分在源点或者汇点的一侧割集 , 那么可以推出 \(C_{u,v}\leq C_{u,t}\) , 如果不是那么显然直接割掉 \(u,t\) 就能达到割掉 \(u,v\) 的目的而使最小割变小。
类似的可以得出 \(C_{u,v}\geq C_{u,t}\) , 那么只能是 \(C_{u,v}=C_{u,t}\)
用归纳法可以得到一个 \(n\) 个点的图中最多只有 \(n-1\) 个不同的最小割。

如何构建最小割树?

采用递归的策略 , 对于当前点集 , 任意取两个点做最小割(注意这里是对原图跑最小割) , 然后给这两个点连边 , 权值为最小割大小。
然后就把参与网络中与源点可达的点与源点扔在一起 , 与其他的和汇点扔在一起。两边递归即可。
正确性就是证明只有 \(n-1\) 个不同的最小割中的道理相同 , 考虑某一个点被划分在哪个集合从而保证了正确性。

代码:

cpp1:

#include<bits/stdc++.h>
using namespace std;
#define Set(a,b) memset(a,b,sizeof(a))
#define Copy(a,b) memcpy(a,b,sizeof(a))
template<class T> inline void init(T&x){
    x=0;char ch=getchar();bool t=0;
    for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
    for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
    if(t) x=-x;
}
const int M=3020;
const int N=200;
const int INF=2e9;
struct edge{
    int to,next,cap,flow;
}a[M<<1];
int head[N],cnt=0;
int que[N],n,m;
inline void add(int x,int y,int z){a[cnt]=(edge){y,head[x],z,z};head[x]=cnt++;}
int d[N],S,T,cur[N];
bool bel[N];queue<int> Q;
inline bool bfs(){
    while(!Q.empty())Q.pop();
    Set(d,0);d[S]=1;Q.push(S);
    while(!Q.empty()){
        int u=Q.front();Q.pop();
        for(int v,i=head[u];~i;i=a[i].next){
            v=a[i].to;if(d[v]||!a[i].cap) continue;
            d[v]=d[u]+1;if(v==T) return 1;
            Q.push(v);
        }
    }
    return d[T];
}
int dfs(int u,int flow){
    if(u==T) return flow;
    int rest=flow;
    for(int v,&i=cur[u];~i;i=a[i].next){
        v=a[i].to;if(!a[i].cap||d[v]!=d[u]+1) continue;
        int f=dfs(v,min(a[i].cap,rest));
        if(!f) d[v]=0;
        rest-=f;a[i].cap-=f,a[i^1].cap+=f;
        if(!rest) break;
    }
    return flow-rest;
}
inline int Dinic(){
    int flow=0;
    while(bfs()) Copy(cur,head),flow+=dfs(S,INF);
    return flow;
}
inline void Return(){for(int i=0;i<cnt;++i) a[i].cap=a[i].flow;for(int i=1;i<=n;++i) bel[i]=0;}
void Dfs(int u){bel[u]=1;for(int v,i=head[u];~i;i=a[i].next){v=a[i].to;if(a[i].cap&&!bel[v]) Dfs(v);}}
namespace GHT{
    struct edge{int to,next,w;}a[N<<1];
    int head[N],cnt=0;
    inline void add(int x,int y,int z){a[++cnt]=(edge){y,head[x],z};head[x]=cnt;}
    int tmp[N];
    inline void Clear(){Set(head,0);cnt=0;}
    void Build(int l,int r){
        if(l>=r) return;
        S=que[l],T=que[r];Return();int Flow=Dinic();Dfs(S);
        int L=l-1,R=r+1;add(S,T,Flow),add(T,S,Flow);
        for(int i=l;i<=r;++i) {int u=que[i];if(bel[u]) tmp[++L]=u;else tmp[--R]=u;}
        for(int i=l;i<=r;++i) que[i]=tmp[i];
        Build(l,L),Build(R,r);
        return;
    }
    int gezi[N*N];
    inline void DFS(int u,int fa,int Mi){
        if(Mi!=INF) gezi[++gezi[0]]=Mi;
        for(int v,i=head[u];i;i=a[i].next){
            v=a[i].to;if(v==fa) continue;
            DFS(v,u,min(Mi,a[i].w));
        }
    }
    inline void work(){
        for(int i=1;i<=n;++i) que[i]=i;
        Build(1,n);gezi[0]=0;
        for(int i=1;i<=n;++i) DFS(i,0,INF);
        sort(gezi+1,gezi+1+gezi[0]);
        int q;init(q);
        while(q--){
            int x;init(x);printf("%d\n",(upper_bound(gezi+1,gezi+1+gezi[0],x)-gezi-1)/2);
        }
        puts("");
        return;
    }
}
int main()
{
    int T;init(T);
    while(T--){
        Set(head,-1);cnt=0;GHT::Clear();
        init(n),init(m);
        int u,v,w;
        for(int i=1;i<=m;++i) {
            init(u),init(v),init(w);
            add(u,v,w),add(v,u,w);
        }
        GHT::work();
    }
    return 0;
}

cpp2:

#include<bits/stdc++.h>
using namespace std;
#define Set(a,b) memset(a,b,sizeof(a))
#define Copy(a,b) memcpy(a,b,sizeof(a))
template<class T> inline void init(T&x){
    x=0;char ch=getchar();bool t=0;
    for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
    for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
    if(t) x=-x;
}
const int M=8501;
const int N=1000;
const int INF=2e9;
struct edge{
    int to,next,cap,flow;
}a[M<<1];
int head[N],cnt=0;
int que[N],n,m;
inline void add(int x,int y,int z){a[cnt]=(edge){y,head[x],z,z};head[x]=cnt++;}
int d[N],S,T,cur[N];
bool bel[N];queue<int> Q;
inline bool bfs(){
    while(!Q.empty())Q.pop();
    Set(d,0);d[S]=1;Q.push(S);
    while(!Q.empty()){
        int u=Q.front();Q.pop();
        for(int v,i=head[u];~i;i=a[i].next){
            v=a[i].to;if(d[v]||!a[i].cap) continue;
            d[v]=d[u]+1;if(v==T) return 1;
            Q.push(v);
        }
    }
    return d[T];
}
int dfs(int u,int flow){
    if(u==T) return flow;
    int rest=flow;
    for(int v,&i=cur[u];~i;i=a[i].next){
        v=a[i].to;if(!a[i].cap||d[v]!=d[u]+1) continue;
        int f=dfs(v,min(a[i].cap,rest));
        if(!f) d[v]=0;
        rest-=f;a[i].cap-=f,a[i^1].cap+=f;
        if(!rest) break;
    }
    return flow-rest;
}
inline int Dinic(){
    int flow=0;
    while(bfs()) Copy(cur,head),flow+=dfs(S,INF);
    return flow;
}
inline void Return(){for(int i=0;i<cnt;++i) a[i].cap=a[i].flow;for(int i=1;i<=n;++i) bel[i]=0;}
void Dfs(int u){bel[u]=1;for(int v,i=head[u];~i;i=a[i].next){v=a[i].to;if(a[i].cap&&!bel[v]) Dfs(v);}}
namespace GHT{
    struct edge{int to,next,w;}a[N<<1];
    int head[N],cnt=0;
    inline void add(int x,int y,int z){a[++cnt]=(edge){y,head[x],z};head[x]=cnt;}
    int tmp[N];
    void Build(int l,int r){
        if(l>=r) return;
        S=que[l],T=que[r];Return();int Flow=Dinic();Dfs(S);
        int L=l-1,R=r+1;add(S,T,Flow),add(T,S,Flow);
        for(int i=l;i<=r;++i) {int u=que[i];if(bel[u]) tmp[++L]=u;else tmp[--R]=u;}
        for(int i=l;i<=r;++i) que[i]=tmp[i];
        Build(l,L),Build(R,r);
        return;
    }
    map<int,int>vis;
    int ans=0;
    inline void DFS(int u,int fa,int Mi){
        if(Mi!=INF) {if(!vis.count(Mi)) vis[Mi]=1,++ans;}
        for(int v,i=head[u];i;i=a[i].next){
            v=a[i].to;if(v==fa) continue;
            DFS(v,u,min(Mi,a[i].w));
        }
    }
    inline void work(){
        for(int i=1;i<=n;++i) que[i]=i;
        Build(1,n);
        for(int i=1;i<=n;++i) DFS(i,0,INF);
        cout<<ans<<endl;
        return;
    }
}
int main()
{
    Set(head,-1);
    init(n),init(m);
    int u,v,w;
    for(int i=1;i<=m;++i) {
        init(u),init(v),init(w);
        add(u,v,w),add(v,u,w);
    }
    GHT::work();
    return 0;
}

【LuoguP3329&4123】[ZJOI2011]最小割&[CQOI2016]不同的最小割

原文:https://www.cnblogs.com/NeosKnight/p/10443948.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!