for epoch in range(training_steps):
with tf.Session() as sess:
sess.run(tf.global_variable_initializer())
sess.run(train_op)
if epoch % 100 == 0 :
print(sess.run([loss]))
上述代码写后,trian loss 和 valid loss 一致都不怎么变化,好像神经网络完全没有在训练一样。这是因为每训练一次后,weight和bias都被重新初始化了。
# 正确方法
with tf.Session() as sess:
sess.run(tf.global_variable_initializer())
for epoch in range(training_steps):
sess.run(train_op)
if epoch % 100 = 0:
print(sess.run([loss]))
原文:https://www.cnblogs.com/ZeroTensor/p/10447233.html